Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the astra-sites domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /home/statplace/public_html/site/wp-includes/functions.php on line 6114

Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the jetpack domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /home/statplace/public_html/site/wp-includes/functions.php on line 6114

Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the wpforms-lite domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /home/statplace/public_html/site/wp-includes/functions.php on line 6114

Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the wordpress-seo domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /home/statplace/public_html/site/wp-includes/functions.php on line 6114

Notice: A função _load_textdomain_just_in_time foi chamada incorretamente. O carregamento da tradução para o domínio astra foi ativado muito cedo. Isso geralmente é um indicador de que algum código no plugin ou tema está sendo executado muito cedo. As traduções devem ser carregadas na ação init ou mais tarde. Leia como Depurar o WordPress para mais informações. (Esta mensagem foi adicionada na versão 6.7.0.) in /home/statplace/public_html/site/wp-includes/functions.php on line 6114

Warning: Cannot modify header information - headers already sent by (output started at /home/statplace/public_html/site/wp-includes/functions.php:6114) in /home/statplace/public_html/site/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /home/statplace/public_html/site/wp-includes/functions.php:6114) in /home/statplace/public_html/site/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /home/statplace/public_html/site/wp-includes/functions.php:6114) in /home/statplace/public_html/site/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /home/statplace/public_html/site/wp-includes/functions.php:6114) in /home/statplace/public_html/site/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /home/statplace/public_html/site/wp-includes/functions.php:6114) in /home/statplace/public_html/site/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /home/statplace/public_html/site/wp-includes/functions.php:6114) in /home/statplace/public_html/site/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /home/statplace/public_html/site/wp-includes/functions.php:6114) in /home/statplace/public_html/site/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /home/statplace/public_html/site/wp-includes/functions.php:6114) in /home/statplace/public_html/site/wp-includes/rest-api/class-wp-rest-server.php on line 1893
{"id":7058,"date":"2020-10-15T13:00:03","date_gmt":"2020-10-15T16:00:03","guid":{"rendered":"https:\/\/site.statplace.com.br\/?p=7058"},"modified":"2024-10-01T20:31:16","modified_gmt":"2024-10-01T20:31:16","slug":"gtsummary-tabelas-de-resumo-prontas-para-publicacao","status":"publish","type":"post","link":"https:\/\/site.statplace.com.br\/blog\/gtsummary-tabelas-de-resumo-prontas-para-publicacao\/","title":{"rendered":"Gtsummary: tabelas de resumo prontas para publica\u00e7\u00e3o"},"content":{"rendered":"\n

Artigo escrito com a colabora\u00e7\u00e3o de Lara Reis. <\/p>\n\n\n\n

O pacote gtsummary<\/a> apresenta tabelas anal\u00edticas e de resumo, prontas para a publica\u00e7\u00e3o.<\/p>\n\n\n\n

O nome gtsummary surgiu em raz\u00e3o da inten\u00e7\u00e3o dos criadores de aproveitar todos os recursos do pacote gt. E a motiva\u00e7\u00e3o por tr\u00e1s da cria\u00e7\u00e3o do pacote veio do contato que os desenvolvedores tinham com o trabalho em bioestatistica. Todos os dias eles resumiam conjuntos de dados e modelos de regress\u00e3o em R, que eventualmente eram inclu\u00eddos em publica\u00e7\u00f5es.<\/p>\n\n\n\n

Eles tinham seus pr\u00f3prios scripts para cria\u00e7\u00e3o de tabelas espec\u00edficas<\/a>, mas, mesmo assim, muitas vezes precisavam modificar a formata\u00e7\u00e3o em um editor de documentos posteriormente, o que n\u00e3o levava a resultados reproduz\u00edveis.<\/p>\n\n\n\n

Instala\u00e7\u00e3o do pacote gtsummary<\/h2>\n\n\n\n
install.packages(\"gtsummary\")\nlibrary(gtsummary)<\/code><\/pre>\n\n\n\n

Dados<\/h2>\n\n\n\n
AVC %>% DT::datatable()<\/code><\/pre>\n\n\n\n

Show 10 entries<\/p>\n\n\n\n

<\/th>ID<\/th>Idade<\/th>Sexo<\/th>Altura<\/th>Peso<\/th>IMC<\/th>Classifica\u00e7\u00e3o.IMC<\/th>Doen\u00e7a.cr\u00f4nica<\/th>Tempo.de.diagn\u00f3stico<\/th>Diagn\u00f3stico.Funcional<\/th>PIM\u00e1x<\/th>PEM\u00e1x<\/th>MIF<\/th>Classifica\u00e7\u00e3o.MIF<\/th>EAT.10<\/th>Disfagia<\/th>DASI<\/th><\/tr><\/thead>
1<\/td>1<\/td>70<\/td>Feminino<\/td>140<\/td>60<\/td>21.42<\/td>Baixo Peso<\/td>Hipertens\u00e3o Arterial Sist\u00eamica e Diabetes Mellitus<\/td>6<\/td>Hemiparesia \u00e0 esquerda<\/td>50<\/td>80<\/td>125<\/td>Independ\u00eancia completa<\/td>0<\/td>0<\/td>4.64<\/td><\/tr>
2<\/td>2<\/td>63<\/td>Masculino<\/td>163<\/td>80<\/td>24.53<\/td>Adequado ou Eutr\u00f3fico<\/td>Hipertens\u00e3o Arterial Sist\u00eamica<\/td>7<\/td>Hemiparesia \u00e0 direita<\/td>60<\/td>160<\/td>125<\/td>Independ\u00eancia completa<\/td>4<\/td>1<\/td>5.07<\/td><\/tr>
3<\/td>3<\/td>63<\/td>Masculino<\/td>165<\/td>72<\/td>21.81<\/td>Baixo Peso<\/td>Hipertens\u00e3o Arterial Sist\u00eamica<\/td>12<\/td>Hemiparesia \u00e0 esquerda<\/td>50<\/td>100<\/td>119<\/td>Independ\u00eancia completa<\/td>0<\/td>0<\/td>5.07<\/td><\/tr>
4<\/td>4<\/td>64<\/td>Feminino<\/td>149<\/td>61<\/td>20.46<\/td>Baixo Peso<\/td>Hipertens\u00e3o Arterial Sist\u00eamica<\/td>48<\/td>Hemiparesia \u00e0 direita<\/td>50<\/td>70<\/td>126<\/td>Independ\u00eancia completa<\/td>0<\/td>0<\/td>5.07<\/td><\/tr>
5<\/td>5<\/td>70<\/td>Feminino<\/td>155<\/td>58<\/td>18.7<\/td>Baixo Peso<\/td>Hipertens\u00e3o Arterial Sist\u00eamica<\/td>6<\/td>Hemiparesia \u00e0 direita<\/td>50<\/td>50<\/td>115<\/td>Independ\u00eancia completa<\/td>0<\/td>0<\/td>4.64<\/td><\/tr>
6<\/td>6<\/td>68<\/td>Masculino<\/td>163<\/td>78<\/td>23.92<\/td>Adequado ou Eutr\u00f3fico<\/td>Hipertens\u00e3o Arterial Sist\u00eamica<\/td>6<\/td>Hemiparesia \u00e0 esquerda<\/td>80<\/td>110<\/td>123<\/td>Independ\u00eancia completa<\/td>0<\/td>0<\/td>3.3<\/td><\/tr>
7<\/td>7<\/td>67<\/td>Feminino<\/td>160<\/td>78.3<\/td>24.4<\/td>Adequado ou Eutr\u00f3fico<\/td>Hipertens\u00e3o Arterial Sist\u00eamica<\/td>132<\/td>Hemiparesia \u00e0 esquerda<\/td>60<\/td>70<\/td>124<\/td>Independ\u00eancia completa<\/td>0<\/td>0<\/td>5.5<\/td><\/tr>
8<\/td>8<\/td>73<\/td>Masculino<\/td>155<\/td>68.5<\/td>22.8<\/td>Adequado ou Eutr\u00f3fico<\/td>N\u00e3o<\/td>8<\/td>Hemiparesia \u00e0 esquerda<\/td>40<\/td>50<\/td>123<\/td>Independ\u00eancia completa<\/td>0<\/td>0<\/td>3.3<\/td><\/tr>
9<\/td>9<\/td>71<\/td>Masculino<\/td>165<\/td>107<\/td>32.42<\/td>Sobrepeso<\/td>N\u00e3o<\/td>6<\/td>Hemiparesia \u00e0 esquerda<\/td>60<\/td>100<\/td>126<\/td>Independ\u00eancia completa<\/td>0<\/td>0<\/td>4.64<\/td><\/tr>
10<\/td>10<\/td>60<\/td>Feminino<\/td>160<\/td>60<\/td>18.75<\/td>Baixo Peso<\/td>Hipertens\u00e3o Arterial Sist\u00eamica<\/td>12<\/td>Hemiparesia \u00e0 esquerda<\/td>80<\/td>70<\/td>126<\/td>Independ\u00eancia completa<\/td>0<\/td>0<\/td>4.64<\/td><\/tr><\/tbody><\/table><\/figure>\n\n\n\n

Showing 1 to 10 of 61 entries<\/p>\n\n\n\n

Fun\u00e7\u00f5es do gtsummary<\/h2>\n\n\n\n

O pacote apresenta as seguintes fun\u00e7\u00f5es principais:<\/p>\n\n\n\n

  • tbl_summary( )<\/em>: calcula estat\u00edsticas descritivas e apresenta os resultados em tabelas resumo;<\/li>
  • tbl_cross( )<\/em>: compara duas vari\u00e1veis categ\u00f3ricas;<\/li>
  • tbl_uvregression( )<\/em>: realiza uma regress\u00e3o univariada e retorna uma tabela formatada com as principais estat\u00edsticas do modelo;<\/li>
  • tbl_regression( )<\/em>: atrav\u00e9s de um objeto de um modelo de regress\u00e3o multivariada retorna uma tabela formatada com as principais estat\u00edsticas do modelo;<\/li>
  • inline_text( )<\/em>: possibilita a cria\u00e7\u00e3o de relat\u00f3rios reproduz\u00edveis, relatando os resultados das tabelas no texto de um relat\u00f3rio de Markdown.<\/li><\/ul>\n\n\n\n

    tbl_summary()<\/em><\/h3>\n\n\n\n

    Uso b\u00e1sico<\/h4>\n\n\n\n

    Por padr\u00e3o:<\/p>\n\n\n\n

    • Os tipos de vari\u00e1veis s\u00e3o identificadas e as estat\u00edsticas apropriadas s\u00e3o calculadas.<\/li>
    • Os atributos de cada vari\u00e1vel do conjunto de dados s\u00e3o impressos automaticamente.<\/li>
    • Os n\u00edveis de vari\u00e1veis s\u00e3o recuados e notas de rodap\u00e9 s\u00e3o adicionadas.<\/li><\/ul>\n\n\n\n
      AVC %>% tbl_summary()<\/code><\/pre>\n\n\n\n
      Characteristic<\/strong><\/th>N = 61<\/strong>1<\/sup><\/th><\/tr><\/thead>
      ID<\/td>31 (16, 46)<\/td><\/tr>
      Idade<\/td>68 (63, 73)<\/td><\/tr>
      Sexo<\/td><\/td><\/tr>
      Feminino<\/td>25 (41%)<\/td><\/tr>
      Masculino<\/td>36 (59%)<\/td><\/tr>
      Altura<\/td>160 (155, 165)<\/td><\/tr>
      Peso<\/td>69 (64, 78)<\/td><\/tr>
      IMC<\/td>24.7 (21.8, 26.9)<\/td><\/tr>
      Classifica\u00e7\u00e3o.IMC<\/td><\/td><\/tr>
      Adequado ou Eutr\u00f3fico<\/td>30 (49%)<\/td><\/tr>
      Baixo Peso<\/td>16 (26%)<\/td><\/tr>
      Sobrepeso<\/td>15 (25%)<\/td><\/tr>
      Doen\u00e7a.cr\u00f4nica<\/td><\/td><\/tr>
      Hipertens\u00e3o Arterial Sist\u00eamica<\/td>37 (61%)<\/td><\/tr>
      Hipertens\u00e3o Arterial Sist\u00eamica e Diabetes Mellitus<\/td>15 (25%)<\/td><\/tr>
      Hipertens\u00e3o Arterial Sist\u00eamica e Insufici\u00eancia Renal<\/td>1 (1.6%)<\/td><\/tr>
      N\u00e3o<\/td>8 (13%)<\/td><\/tr>
      Tempo.de.diagn\u00f3stico<\/td>15 (9, 36)<\/td><\/tr>
      Diagn\u00f3stico.Funcional<\/td><\/td><\/tr>
      Hemiparesia \u00e0 direita<\/td>25 (41%)<\/td><\/tr>
      Hemiparesia \u00e0 esquerda<\/td>36 (59%)<\/td><\/tr>
      PIM\u00e1x<\/td>60 (45, 70)<\/td><\/tr>
      PEM\u00e1x<\/td>70 (50, 80)<\/td><\/tr>
      MIF<\/td>118 (95, 125)<\/td><\/tr>
      Classifica\u00e7\u00e3o.MIF<\/td><\/td><\/tr>
      Depend\u00eancia modificada at\u00e9 25%<\/td>13 (21%)<\/td><\/tr>
      Depend\u00eancia modificada at\u00e9 50%<\/td>6 (9.8%)<\/td><\/tr>
      Independ\u00eancia completa<\/td>42 (69%)<\/td><\/tr>
      EAT.10<\/td>0 (0, 3)<\/td><\/tr>
      Disfagia<\/td>16 (26%)<\/td><\/tr>
      DASI<\/td>4.47 (3.30, 4.98)<\/td><\/tr>
      Unknown<\/td>31<\/td><\/tr><\/tbody>
      1<\/em> <\/sup>Statistics presented: Median (IQR); n (%)<\/td><\/tr><\/tfoot><\/table><\/figure>\n\n\n\n

      \u00c9 poss\u00edvel personalizar a sa\u00edda para ter tabelas mais interessantes<\/p>\n\n\n\n

      • Fun\u00e7\u00f5es do gtsummary para modificar a apar\u00eancia da tabela<\/li><\/ul>\n\n\n\n
        Argumento<\/th>Descri\u00e7\u00e3o<\/th><\/tr><\/thead>
        label<\/td>especificar as etiquetas das vari\u00e1veis impressas na tabela<\/td><\/tr>
        type<\/td>especifique o tipo de vari\u00e1vel (por exemplo, cont\u00ednua, categ\u00f3rica, etc.)<\/td><\/tr>
        by<\/td>uma vari\u00e1vel na qual as estatisticas resumo ser\u00e3o calculadas separadamente para cada n\u00edvel<\/td><\/tr>
        statistic<\/td>alterar as estat\u00edsticas de resumo apresentadas<\/td><\/tr>
        digits<\/td>n\u00famero de d\u00edgitos que as estat\u00edsticas de resumo ser\u00e3o arredondadas<\/td><\/tr>
        missing<\/td>se deve exibir uma linha com o n\u00famero de observa\u00e7\u00f5es ausentes<\/td><\/tr>
        percent<\/td>imprimir porcentagem de coluna, linha ou c\u00e9lula<\/td><\/tr><\/tbody><\/table><\/figure>\n\n\n\n
        • Fun\u00e7\u00f5es do gtsummary para adicionar informa\u00e7\u00e3o \u00e0 tabela<\/li><\/ul>\n\n\n\n
          Fun\u00e7\u00e3o<\/th>Descri\u00e7\u00e3o<\/th><\/tr><\/thead>
          add_p()<\/td>adicione valores p \u00e0 sa\u00edda comparando valores entre grupos<\/td><\/tr>
          add_overall()<\/td>adicione uma coluna com estat\u00edsticas gerais de resumo<\/td><\/tr>
          add_n()<\/td>adicione uma coluna com N (ou N faltando) para cada vari\u00e1vel<\/td><\/tr>
          add_stat_label()<\/td>adicionar etiqueta para as estat\u00edsticas de resumo mostradas em cada linha<\/td><\/tr><\/tbody><\/table><\/figure>\n\n\n\n
          • Fun\u00e7\u00f5es para formatar a tabela<\/li><\/ul>\n\n\n\n
            Fun\u00e7\u00e3o<\/th>Descri\u00e7\u00e3o<\/th><\/tr><\/thead>
            modify_header()<\/td>atualizar cabe\u00e7alhos de coluna<\/td><\/tr>
            modify_footnote()<\/td>atualizar cabe\u00e7alhos abrangentes<\/td><\/tr>
            bold_labels()<\/td>r\u00f3tulos de vari\u00e1veis em negrito<\/td><\/tr>
            bold_levels()<\/td>n\u00edveis vari\u00e1veis em negrito<\/td><\/tr>
            italicize_labels()<\/td>it\u00e1lico r\u00f3tulos de vari\u00e1veis<\/td><\/tr>
            italicize_levels()<\/td>it\u00e1lico n\u00edveis vari\u00e1veis<\/td><\/tr>
            bold_p()<\/td>valores p significativos em negrito<\/td><\/tr><\/tbody><\/table><\/figure>\n\n\n\n

            Uso personalizado<\/h4>\n\n\n\n
            • An\u00e1lise descritiva para vari\u00e1veis num\u00e9ricas<\/li><\/ul>\n\n\n\n
              t1 <-\n  AVC %>%\n  select(Idade, Altura, IMC, Peso,PIM\u00e1x, PEM\u00e1x, MIF, DASI ) %>%   \n  tbl_summary(statistic = all_continuous() ~ \"{mean}\", missing = \"no\",\n              digits = list(all_continuous()~ 2)) %>%\n  modify_header(stat_0 ~ \"**M\u00e9dia**\") %>% add_n() \n\nt2 <-\n  AVC %>%\n  select(Idade, Altura, IMC, Peso,PIM\u00e1x, PEM\u00e1x, MIF, DASI ) %>%\n  tbl_summary(statistic = all_continuous() ~ \"{sd}\", missing = \"no\",\n              digits = list(all_continuous()~ 2)) %>%\n  modify_header(stat_0 ~ \"**S.D.**\") \nt3 <-\n  AVC %>%\n  select(Idade, Altura, IMC, Peso,PIM\u00e1x, PEM\u00e1x, MIF, DASI ) %>%\n  tbl_summary(statistic = all_continuous() ~ \"{min}\", missing = \"no\",\n              digits = list(all_continuous()~ 2)) %>%\n  modify_header(stat_0 ~ \"**M\u00edn**\") \nt4 <-\n  AVC %>%\n  select(Idade, Altura, IMC, Peso,PIM\u00e1x, PEM\u00e1x, MIF, DASI ) %>%\n  tbl_summary(statistic = all_continuous() ~ \"{p25}\", missing = \"no\",\n              digits = list(all_continuous()~ 2)) %>%\n  modify_header(stat_0 ~ \"**1\u00baQ**\") \n\nt5 <-\n  AVC %>%\n  select(Idade, Altura, IMC, Peso,PIM\u00e1x, PEM\u00e1x, MIF, DASI ) %>%\n  tbl_summary(statistic = all_continuous() ~ \"{p50}\", missing = \"no\",\n              digits = list(all_continuous()~ 2)) %>%\n  modify_header(stat_0 ~ \"**2\u00baQ**\") \n\nt6 <-\n  AVC %>%\n  select(Idade, Altura, IMC, Peso,PIM\u00e1x, PEM\u00e1x, MIF, DASI ) %>%\n  tbl_summary(statistic = all_continuous() ~ \"{p75}\", missing = \"no\",\n              digits = list(all_continuous()~ 2)) %>%\n  modify_header(stat_0 ~ \"**3\u00baQ**\")\n\nt7 <-\n  AVC %>%\n  select(Idade, Altura, IMC, Peso,PIM\u00e1x, PEM\u00e1x, MIF, DASI ) %>%\n  tbl_summary(statistic = all_continuous() ~ \"{max}\", missing = \"no\",\n              digits = list(all_continuous()~ 2)) %>%\n  modify_header(stat_0 ~ \"**M\u00e1x.**\") \n\ntbl_numerica <- tbl_merge(list(t1, t2,t3,t4,t5,t6,t7)) %>% \n  modify_header(update = list(label  ~  \"**Vari\u00e1veis**\")) %>%  #modificando o nome da coluna\n  modify_footnote(everything() ~ NA_character_) %>% #retiradando os significados das estatisticas\n  modify_spanning_header(everything() ~ NA_character_) #retirando o nome da tabela\ntbl_numerica<\/code><\/pre>\n\n\n\n
              Vari\u00e1veis<\/strong><\/th>N<\/strong><\/th>M\u00e9dia<\/strong><\/th>S.D.<\/strong><\/th>M\u00edn<\/strong><\/th>1\u00baQ<\/strong><\/th>2\u00baQ<\/strong><\/th>3\u00baQ<\/strong><\/th>M\u00e1x.<\/strong><\/th><\/tr><\/thead>
              Idade<\/td>61<\/td>69.05<\/td>7.32<\/td>60.00<\/td>63.00<\/td>68.00<\/td>73.00<\/td>87.00<\/td><\/tr>
              Altura<\/td>61<\/td>160.57<\/td>9.17<\/td>140.00<\/td>155.00<\/td>160.00<\/td>165.00<\/td>184.00<\/td><\/tr>
              IMC<\/td>61<\/td>24.75<\/td>4.71<\/td>15.00<\/td>21.81<\/td>24.71<\/td>26.90<\/td>41.90<\/td><\/tr>
              Peso<\/td>61<\/td>70.61<\/td>10.71<\/td>43.50<\/td>64.00<\/td>69.40<\/td>77.60<\/td>107.00<\/td><\/tr>
              PIM\u00e1x<\/td>61<\/td>58.77<\/td>17.29<\/td>25.00<\/td>45.00<\/td>60.00<\/td>70.00<\/td>100.00<\/td><\/tr>
              PEM\u00e1x<\/td>61<\/td>70.00<\/td>23.66<\/td>20.00<\/td>50.00<\/td>70.00<\/td>80.00<\/td>160.00<\/td><\/tr>
              MIF<\/td>61<\/td>108.13<\/td>21.37<\/td>50.00<\/td>95.00<\/td>118.00<\/td>125.00<\/td>126.00<\/td><\/tr>
              DASI<\/td>30<\/td>4.30<\/td>1.06<\/td>2.74<\/td>3.30<\/td>4.47<\/td>4.98<\/td>6.70<\/td><\/tr><\/tbody><\/table><\/figure>\n\n\n\n
              • An\u00e1lise descritiva para vari\u00e1veis categ\u00f3ricas<\/li><\/ul>\n\n\n\n
                categ <- AVC %>%\n  select(Sexo, Disfagia,Classifica\u00e7\u00e3o.IMC, Doen\u00e7a.cr\u00f4nica,Diagn\u00f3stico.Funcional, Classifica\u00e7\u00e3o.MIF, ) %>%\n  tbl_summary(\n    type = all_categorical() ~ \"categorical\") %>% \n  modify_header(update =list(label  ~  \"**Vari\u00e1veis**\"))%>% \n  bold_labels() #n\u00edveis vari\u00e1veis em negrito\ncateg<\/code><\/pre>\n\n\n\n
                Vari\u00e1veis<\/strong><\/th>N = 61<\/strong>1<\/sup><\/th><\/tr><\/thead>
                Sexo<\/strong><\/td><\/td><\/tr>
                Feminino<\/td>25 (41%)<\/td><\/tr>
                Masculino<\/td>36 (59%)<\/td><\/tr>
                Disfagia<\/strong><\/td><\/td><\/tr>
                0<\/td>45 (74%)<\/td><\/tr>
                1<\/td>16 (26%)<\/td><\/tr>
                Classifica\u00e7\u00e3o.IMC<\/strong><\/td><\/td><\/tr>
                Adequado ou Eutr\u00f3fico<\/td>30 (49%)<\/td><\/tr>
                Baixo Peso<\/td>16 (26%)<\/td><\/tr>
                Sobrepeso<\/td>15 (25%)<\/td><\/tr>
                Doen\u00e7a.cr\u00f4nica<\/strong><\/td><\/td><\/tr>
                Hipertens\u00e3o Arterial Sist\u00eamica<\/td>37 (61%)<\/td><\/tr>
                Hipertens\u00e3o Arterial Sist\u00eamica e Diabetes Mellitus<\/td>15 (25%)<\/td><\/tr>
                Hipertens\u00e3o Arterial Sist\u00eamica e Insufici\u00eancia Renal<\/td>1 (1.6%)<\/td><\/tr>
                N\u00e3o<\/td>8 (13%)<\/td><\/tr>
                Diagn\u00f3stico.Funcional<\/strong><\/td><\/td><\/tr>
                Hemiparesia \u00e0 direita<\/td>25 (41%)<\/td><\/tr>
                Hemiparesia \u00e0 esquerda<\/td>36 (59%)<\/td><\/tr>
                Classifica\u00e7\u00e3o.MIF<\/strong><\/td><\/td><\/tr>
                Depend\u00eancia modificada at\u00e9 25%<\/td>13 (21%)<\/td><\/tr>
                Depend\u00eancia modificada at\u00e9 50%<\/td>6 (9.8%)<\/td><\/tr>
                Independ\u00eancia completa<\/td>42 (69%)<\/td><\/tr><\/tbody>
                1<\/em> <\/sup>Statistics presented: n (%)<\/td><\/tr><\/tfoot><\/table><\/figure>\n\n\n\n
                • Tabela de conting\u00eancia<\/li><\/ul>\n\n\n\n
                  AVC %>%\n  select(Disfagia, Sexo, Classifica\u00e7\u00e3o.IMC,Doen\u00e7a.cr\u00f4nica, Diagn\u00f3stico.Funcional,\n         Classifica\u00e7\u00e3o.MIF,) %>%\n  mutate(Disfagia = factor(Disfagia, labels = c(\"Sem risco\", \"Com Risco\"))) %>%\n  tbl_summary(\n    by = Disfagia, \n    missing = \"no\",\n  ) %>%\n  add_p(pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% \n  modify_header(update =list(label  ~  \"**Vari\u00e1veis**\", p.value ~ \"**Valor-p**\"))%>% \n  bold_labels() %>% \n  bold_p(t = 0.05)<\/code><\/pre>\n\n\n\n
                  Vari\u00e1veis<\/strong><\/th>Sem risco<\/strong>, N = 451<\/sup><\/th>Com Risco<\/strong>, N = 161<\/sup><\/th>Valor-p<\/strong>2<\/sup><\/th><\/tr><\/thead>
                  Sexo<\/strong><\/td><\/td><\/td>0.973<\/td><\/tr>
                  Feminino<\/td>19 (42%)<\/td>6 (38%)<\/td><\/td><\/tr>
                  Masculino<\/td>26 (58%)<\/td>10 (62%)<\/td><\/td><\/tr>
                  Classifica\u00e7\u00e3o.IMC<\/strong><\/td><\/td><\/td>0.098<\/td><\/tr>
                  Adequado ou Eutr\u00f3fico<\/td>19 (42%)<\/td>11 (69%)<\/td><\/td><\/tr>
                  Baixo Peso<\/td>12 (27%)<\/td>4 (25%)<\/td><\/td><\/tr>
                  Sobrepeso<\/td>14 (31%)<\/td>1 (6.2%)<\/td><\/td><\/tr>
                  Doen\u00e7a.cr\u00f4nica<\/strong><\/td><\/td><\/td>0.782<\/td><\/tr>
                  Hipertens\u00e3o Arterial Sist\u00eamica<\/td>26 (58%)<\/td>11 (69%)<\/td><\/td><\/tr>
                  Hipertens\u00e3o Arterial Sist\u00eamica e Diabetes Mellitus<\/td>11 (24%)<\/td>4 (25%)<\/td><\/td><\/tr>
                  Hipertens\u00e3o Arterial Sist\u00eamica e Insufici\u00eancia Renal<\/td>1 (2.2%)<\/td>0 (0%)<\/td><\/td><\/tr>
                  N\u00e3o<\/td>7 (16%)<\/td>1 (6.2%)<\/td><\/td><\/tr>
                  Diagn\u00f3stico.Funcional<\/strong><\/td><\/td><\/td>0.531<\/td><\/tr>
                  Hemiparesia \u00e0 direita<\/td>20 (44%)<\/td>5 (31%)<\/td><\/td><\/tr>
                  Hemiparesia \u00e0 esquerda<\/td>25 (56%)<\/td>11 (69%)<\/td><\/td><\/tr>
                  Classifica\u00e7\u00e3o.MIF<\/strong><\/td><\/td><\/td>0.050<\/td><\/tr>
                  Depend\u00eancia modificada at\u00e9 25%<\/td>9 (20%)<\/td>4 (25%)<\/td><\/td><\/tr>
                  Depend\u00eancia modificada at\u00e9 50%<\/td>2 (4.4%)<\/td>4 (25%)<\/td><\/td><\/tr>
                  Independ\u00eancia completa<\/td>34 (76%)<\/td>8 (50%)<\/td><\/td><\/tr><\/tbody>
                  1<\/em> <\/sup>Statistics presented: n (%)
                  2<\/em> <\/sup>Statistical tests performed: chi-square test of independence; Fisher’s exact test<\/td><\/tr><\/tfoot><\/table><\/figure>\n\n\n\n

                  tbl_cross<\/em><\/h3>\n\n\n\n
                  • Adiciona automaticamente um cabe\u00e7alho com o nome ou r\u00f3tulo da vari\u00e1vel de compara\u00e7\u00e3o.<\/li>
                  • Usa percent = \u201ccell\u201d por padr\u00e3o.<\/li>
                  • Adiciona totais de margem de linha e coluna (personaliz\u00e1vel).<\/li><\/ul>\n\n\n\n
                    tc1 <- AVC %>%\n  tbl_cross(\n    row = Sexo,\n    col = Disfagia,\n    percent = \"column\"\n  ) %>%\n  add_p() \ntc1<\/code><\/pre>\n\n\n\n
                    <\/th>DISFAGIA<\/strong><\/th>DISFAGIA<\/strong><\/th><\/th><\/th><\/tr>
                    Characteristic<\/strong><\/th>0<\/th>1<\/th>Total<\/strong><\/th>p-value<\/strong>1<\/sup><\/th><\/tr><\/thead>
                    Sexo<\/strong><\/td><\/td><\/td><\/td>>0.9<\/td><\/tr>
                    Feminino<\/td>19 (42%)<\/td>6 (38%)<\/td>25 (41%)<\/td><\/td><\/tr>
                    Masculino<\/td>26 (58%)<\/td>10 (62%)<\/td>36 (59%)<\/td><\/td><\/tr>
                    Total<\/strong><\/td>45 (100%)<\/td>16 (100%)<\/td>61 (100%)<\/td><\/td><\/tr><\/tbody>
                    1<\/em> <\/sup>chi-square test of independence<\/td><\/tr><\/tfoot><\/table><\/figure>\n\n\n\n

                    As fun\u00e7\u00f5es tbl_uvregression()<\/strong> e tbl_regression()<\/strong> do gtsummary fornecem tabelas com as estat\u00edsticas resumo de um modelo de regress\u00e3o. Elas apresentam as mesmas fun\u00e7\u00f5es para personaliza\u00e7\u00e3o<\/p>\n\n\n\n

                    • Argumentos para modificar a apar\u00eancia.<\/li><\/ul>\n\n\n\n
                      Argumento<\/th>Descri\u00e7\u00e3o<\/th><\/tr><\/thead>
                      label<\/td>modificar r\u00f3tulos de vari\u00e1veis na tabela<\/td><\/tr>
                      exponentiate<\/td>exponenciar os coeficientes do modelo<\/td><\/tr>
                      include<\/td>nomes das vari\u00e1veis a serem inclu\u00eddas na sa\u00edda. O padr\u00e3o \u00e9 todas as vari\u00e1veis<\/td><\/tr>
                      show_single_row<\/td>Por padr\u00e3o, as vari\u00e1veis categ\u00f3ricas s\u00e3o impressas em v\u00e1rias linhas. Se uma vari\u00e1vel \u00e9 dicot\u00f4mica e voc\u00ea deseja imprimir o coeficiente de regress\u00e3o em uma \u00fanica linha, inclua o nome da vari\u00e1vel aqui.<\/td><\/tr>
                      conf.level<\/td>n\u00edvel de confian\u00e7a do intervalo de confian\u00e7a<\/td><\/tr>
                      intercept<\/td>indica se incluir a intercepta\u00e7\u00e3o<\/td><\/tr>
                      estimate_fun<\/td>fun\u00e7\u00e3o para arredondar e formatar estimativas de coeficiente<\/td><\/tr>
                      pvalue_fun<\/td>fun\u00e7\u00e3o para arredondar e formatar valores-p<\/td><\/tr><\/tbody><\/table><\/figure>\n\n\n\n

                      tbl_uvregression()<\/em><\/h3>\n\n\n\n

                      A tbl_uvregression() produz uma tabela de modelos de regress\u00e3o univariada.<\/p>\n\n\n\n

                      Argumento<\/th>Descri\u00e7\u00e3o<\/th><\/tr><\/thead>
                      method<\/td>m\u00e9todo de regress\u00e3o<\/td><\/tr>
                      y<\/td>vari\u00e1vel resposta<\/td><\/tr>
                      x<\/td>vari\u00e1veis explicativas. Por padr\u00e3o, todas as outras s\u00e3o selecionadas<\/td><\/tr>
                      method.args<\/td>lista de argumentos da regress\u00e3o<\/td><\/tr><\/tbody><\/table><\/figure>\n\n\n\n

                      Uso b\u00e1sico<\/h4>\n\n\n\n
                      AVC %>%\n  select(Disfagia,Idade, Altura,Peso, IMC, Tempo.de.diagn\u00f3stico, PIM\u00e1x, PEM\u00e1x, MIF, DASI) %>%\n  tbl_uvregression(\n    method = glm,\n    y = Disfagia,\n    method.args = list(family = binomial),\n    exponentiate = TRUE,\n  )<\/code><\/pre>\n\n\n\n
                      Characteristic<\/strong><\/th>N<\/strong><\/th>OR<\/strong>1<\/sup><\/th>95% CI<\/strong>1<\/sup><\/th>p-value<\/strong><\/th><\/tr><\/thead>
                      Idade<\/td>61<\/td>1.08<\/td>0.99, 1.17<\/td>0.072<\/td><\/tr>
                      Altura<\/td>61<\/td>1.06<\/td>1.00, 1.14<\/td>0.078<\/td><\/tr>
                      Peso<\/td>61<\/td>0.99<\/td>0.93, 1.04<\/td>0.7<\/td><\/tr>
                      IMC<\/td>61<\/td>0.97<\/td>0.85, 1.10<\/td>0.6<\/td><\/tr>
                      Tempo.de.diagn\u00f3stico<\/td>61<\/td>0.99<\/td>0.96, 1.01<\/td>0.3<\/td><\/tr>
                      PIM\u00e1x<\/td>61<\/td>0.94<\/td>0.89, 0.98<\/td>0.006<\/td><\/tr>
                      PEM\u00e1x<\/td>61<\/td>0.98<\/td>0.95, 1.01<\/td>0.2<\/td><\/tr>
                      MIF<\/td>61<\/td>0.97<\/td>0.94, 1.00<\/td>0.031<\/td><\/tr>
                      DASI<\/td>30<\/td>0.62<\/td>0.20, 1.60<\/td>0.4<\/td><\/tr><\/tbody>
                      1<\/em> <\/sup>OR = Odds Ratio, CI = Confidence Interval<\/td><\/tr><\/tfoot><\/table><\/figure>\n\n\n\n

                      Uso personalizado<\/h4>\n\n\n\n
                      AVC %>%\n  select(Disfagia,Idade, Altura,Peso, IMC, Tempo.de.diagn\u00f3stico, PIM\u00e1x, PEM\u00e1x, MIF, DASI) %>%\n  tbl_uvregression(\n    method = glm,\n    y = Disfagia,\n    method.args = list(family = binomial),\n    exponentiate = TRUE,\n    pvalue_fun = ~style_pvalue(.x, digits = 2))%>%\n  bold_p() %>%         \n  modify_header( \n    update =list(label  ~  \"**Vari\u00e1veis**\" ,\n                 p.value  ~  \"**Valor-p**\",\n                 ci ~ \"**I.C. 95%**\"))<\/code><\/pre>\n\n\n\n
                      Vari\u00e1veis<\/strong><\/th>N<\/strong><\/th>OR<\/strong>1<\/sup><\/th>I.C. 95%<\/strong>1<\/sup><\/th>Valor-p<\/strong><\/th><\/tr><\/thead>
                      Idade<\/td>61<\/td>1.08<\/td>0.99, 1.17<\/td>0.072<\/td><\/tr>
                      Altura<\/td>61<\/td>1.06<\/td>1.00, 1.14<\/td>0.078<\/td><\/tr>
                      Peso<\/td>61<\/td>0.99<\/td>0.93, 1.04<\/td>0.70<\/td><\/tr>
                      IMC<\/td>61<\/td>0.97<\/td>0.85, 1.10<\/td>0.64<\/td><\/tr>
                      Tempo.de.diagn\u00f3stico<\/td>61<\/td>0.99<\/td>0.96, 1.01<\/td>0.27<\/td><\/tr>
                      PIM\u00e1x<\/td>61<\/td>0.94<\/td>0.89, 0.98<\/td>0.006<\/td><\/tr>
                      PEM\u00e1x<\/td>61<\/td>0.98<\/td>0.95, 1.01<\/td>0.22<\/td><\/tr>
                      MIF<\/td>61<\/td>0.97<\/td>0.94, 1.00<\/td>0.031<\/td><\/tr>
                      DASI<\/td>30<\/td>0.62<\/td>0.20, 1.60<\/td>0.35<\/td><\/tr><\/tbody>
                      1<\/em> <\/sup>OR = Odds Ratio, CI = Confidence Interval<\/td><\/tr><\/tfoot><\/table><\/figure>\n\n\n\n

                      tbl_regression()<\/em><\/h3>\n\n\n\n

                      A tbl_regression() produz uma tabela de modelos de regress\u00e3o multivariada.<\/p>\n\n\n\n

                      Uso b\u00e1sico<\/h4>\n\n\n\n
                      modelo_mult <- lm(MIF ~ Idade + Peso + Altura + Sexo + \n                      Classifica\u00e7\u00e3o.IMC + Doen\u00e7a.cr\u00f4nica+ Disfagia+\n                    Tempo.de.diagn\u00f3stico + Diagn\u00f3stico.Funcional +\n                    PIM\u00e1x + PEM\u00e1x , \n                    AVC)\nr_multi <- modelo_mult %>% \n  tbl_regression()\nr_multi<\/code><\/pre>\n\n\n\n
                      Characteristic<\/strong><\/th>Beta<\/strong><\/th>95% CI<\/strong>1<\/sup><\/th>p-value<\/strong><\/th><\/tr><\/thead>
                      Idade<\/td>-1.3<\/td>-2.1, -0.45<\/td>0.003<\/td><\/tr>
                      Peso<\/td>0.39<\/td>-0.36, 1.1<\/td>0.3<\/td><\/tr>
                      Altura<\/td>-0.10<\/td>-0.78, 0.58<\/td>0.8<\/td><\/tr>
                      Sexo<\/td><\/td><\/td><\/td><\/tr>
                      Feminino<\/td>\u2014<\/td>\u2014<\/td><\/td><\/tr>
                      Masculino<\/td>9.9<\/td>-2.4, 22<\/td>0.11<\/td><\/tr>
                      Classifica\u00e7\u00e3o.IMC<\/td><\/td><\/td><\/td><\/tr>
                      Adequado ou Eutr\u00f3fico<\/td>\u2014<\/td>\u2014<\/td><\/td><\/tr>
                      Baixo Peso<\/td>4.1<\/td>-10, 18<\/td>0.6<\/td><\/tr>
                      Sobrepeso<\/td>-9.1<\/td>-24, 5.6<\/td>0.2<\/td><\/tr>
                      Doen\u00e7a.cr\u00f4nica<\/td><\/td><\/td><\/td><\/tr>
                      Hipertens\u00e3o Arterial Sist\u00eamica<\/td>\u2014<\/td>\u2014<\/td><\/td><\/tr>
                      Hipertens\u00e3o Arterial Sist\u00eamica e Diabetes Mellitus<\/td>2.1<\/td>-10, 14<\/td>0.7<\/td><\/tr>
                      Hipertens\u00e3o Arterial Sist\u00eamica e Insufici\u00eancia Renal<\/td>18<\/td>-23, 58<\/td>0.4<\/td><\/tr>
                      N\u00e3o<\/td>3.3<\/td>-14, 21<\/td>0.7<\/td><\/tr>
                      Disfagia<\/td>-8.9<\/td>-22, 4.0<\/td>0.2<\/td><\/tr>
                      Tempo.de.diagn\u00f3stico<\/td>0.05<\/td>-0.09, 0.19<\/td>0.5<\/td><\/tr>
                      Diagn\u00f3stico.Funcional<\/td><\/td><\/td><\/td><\/tr>
                      Hemiparesia \u00e0 direita<\/td>\u2014<\/td>\u2014<\/td><\/td><\/tr>
                      Hemiparesia \u00e0 esquerda<\/td>0.24<\/td>-10.0, 10<\/td>>0.9<\/td><\/tr>
                      PIM\u00e1x<\/td>0.00<\/td>-0.38, 0.38<\/td>>0.9<\/td><\/tr>
                      PEM\u00e1x<\/td>0.06<\/td>-0.22, 0.34<\/td>0.7<\/td><\/tr><\/tbody>
                      1<\/em> <\/sup>CI = Confidence Interval<\/td><\/tr><\/tfoot><\/table><\/figure>\n\n\n\n

                      Uso personalizado<\/h4>\n\n\n\n
                      #regres\u00e3o linear\n\nlinear <- lm(PEM\u00e1x ~ Sexo +Classifica\u00e7\u00e3o.IMC + Doen\u00e7a.cr\u00f4nica\n             + Diagn\u00f3stico.Funcional +Disfagia + Peso+\n               Idade + Altura +  IMC+\n               Tempo.de.diagn\u00f3stico +\n                 PIM\u00e1x + MIF+ DASI, AVC)\ninicial <- linear %>% \n  tbl_regression(pvalue_fun =  ~ style_pvalue ( .x , digits =  3))%>% \n  modify_header(update =list(label  ~  \"**Vari\u00e1veis**\",p.value  ~  \"**Valor-p**\",\n                 ci ~ \"**I.C. 95%**\"))  %>% \n  bold_labels() %>%  #grifa a variavel\n  bold_p(t = 0.05)   #grifa os p valores menores que t\ninicial<\/code><\/pre>\n\n\n\n
                      Vari\u00e1veis<\/strong><\/th>Beta<\/strong><\/th>I.C. 95%<\/strong>1<\/sup><\/th>Valor-p<\/strong><\/th><\/tr><\/thead>
                      Sexo<\/strong><\/td><\/td><\/td><\/td><\/tr>
                      Feminino<\/td>\u2014<\/td>\u2014<\/td><\/td><\/tr>
                      Masculino<\/td>28<\/td>-8.2, 63<\/td>0.119<\/td><\/tr>
                      Classifica\u00e7\u00e3o.IMC<\/strong><\/td><\/td><\/td><\/td><\/tr>
                      Adequado ou Eutr\u00f3fico<\/td>\u2014<\/td>\u2014<\/td><\/td><\/tr>
                      Baixo Peso<\/td>13<\/td>-34, 60<\/td>0.552<\/td><\/tr>
                      Sobrepeso<\/td>-8.0<\/td>-71, 55<\/td>0.787<\/td><\/tr>
                      Doen\u00e7a.cr\u00f4nica<\/strong><\/td><\/td><\/td><\/td><\/tr>
                      Hipertens\u00e3o Arterial Sist\u00eamica<\/td>\u2014<\/td>\u2014<\/td><\/td><\/tr>
                      Hipertens\u00e3o Arterial Sist\u00eamica e Diabetes Mellitus<\/td>0.03<\/td>-36, 36<\/td>0.999<\/td><\/tr>
                      Hipertens\u00e3o Arterial Sist\u00eamica e Insufici\u00eancia Renal<\/td>6.4<\/td>-69, 82<\/td>0.857<\/td><\/tr>
                      N\u00e3o<\/td>-11<\/td>-70, 47<\/td>0.689<\/td><\/tr>
                      Diagn\u00f3stico.Funcional<\/strong><\/td><\/td><\/td><\/td><\/tr>
                      Hemiparesia \u00e0 direita<\/td>\u2014<\/td>\u2014<\/td><\/td><\/tr>
                      Hemiparesia \u00e0 esquerda<\/td>2.7<\/td>-28, 34<\/td>0.855<\/td><\/tr>
                      Disfagia<\/strong><\/td>-10<\/td>-51, 31<\/td>0.603<\/td><\/tr>
                      Peso<\/strong><\/td>-3.7<\/td>-13, 5.3<\/td>0.386<\/td><\/tr>
                      Idade<\/strong><\/td>-1.9<\/td>-4.7, 1.0<\/td>0.177<\/td><\/tr>
                      Altura<\/strong><\/td>0.89<\/td>-3.1, 4.8<\/td>0.636<\/td><\/tr>
                      IMC<\/strong><\/td>16<\/td>-13, 45<\/td>0.255<\/td><\/tr>
                      Tempo.de.diagn\u00f3stico<\/strong><\/td>-0.04<\/td>-0.35, 0.28<\/td>0.803<\/td><\/tr>
                      PIM\u00e1x<\/strong><\/td>0.49<\/td>-0.32, 1.3<\/td>0.212<\/td><\/tr>
                      MIF<\/strong><\/td>0.21<\/td>-1.3, 1.7<\/td>0.770<\/td><\/tr>
                      DASI<\/strong><\/td>0.89<\/td>-19, 21<\/td>0.926<\/td><\/tr><\/tbody>
                      1<\/em> <\/sup>CI = Confidence Interval<\/td><\/tr><\/tfoot><\/table><\/figure>\n\n\n\n

                      Usando novamente a fun\u00e7\u00e3o tbl_merge()<\/em> para juntar duas tabelas, podemos cham\u00e1-las de modelo inicial e modelo final<\/p>\n\n\n\n

                      linear2 <- lm(PEM\u00e1x ~ Sexo +\n               Idade +  \n               PIM\u00e1x, AVC)\nfinal <- linear2 %>% tbl_regression(pvalue_fun =  ~ style_pvalue(.x , digits =  3)) %>% \n          modify_header(update =list(label  ~  \"**Vari\u00e1veis**\" ,\n                 p.value  ~  \"**Valor-p**\")) %>% \n  bold_labels() %>%  #grifa a variavel\n  bold_p(t = 0.05) %>%   #grifa os p valores menores que t\n  modify_header(update =list(label  ~  \"**Vari\u00e1veis**\")) \n\n#Podemos juntar duas tabelas\ntbl_merge_ex2 <-\n  tbl_merge(\n    tbls = list(inicial, final), \n    tab_spanner = c(\"**Modelo inicial**\", \"**Modelo final**\") \n  )\ntbl_merge_ex2<\/code><\/pre>\n\n\n\n
                      <\/th>BETA<\/strong><\/th>I.C. 95%<\/strong>1<\/sup><\/th>VALOR-P<\/strong><\/th>BETA<\/strong><\/th>95% CI<\/strong>1<\/sup><\/th><\/tr><\/thead>
                      Sexo<\/strong><\/td><\/td><\/td><\/td><\/td><\/td><\/td><\/tr>
                      Feminino<\/td>\u2014<\/td>\u2014<\/td><\/td>\u2014<\/td>\u2014<\/td><\/td><\/tr>
                      Masculino<\/td>28<\/td>-8.2, 63<\/td>0.119<\/td>11<\/td>0.51, 21<\/td>0.040<\/td><\/tr>
                      Classifica\u00e7\u00e3o.IMC<\/strong><\/td><\/td><\/td><\/td><\/td><\/td><\/td><\/tr>
                      Adequado ou Eutr\u00f3fico<\/td>\u2014<\/td>\u2014<\/td><\/td><\/td><\/td><\/td><\/tr>
                      Baixo Peso<\/td>13<\/td>-34, 60<\/td>0.552<\/td><\/td><\/td><\/td><\/tr>
                      Sobrepeso<\/td>-8.0<\/td>-71, 55<\/td>0.787<\/td><\/td><\/td><\/td><\/tr>
                      Doen\u00e7a.cr\u00f4nica<\/strong><\/td><\/td><\/td><\/td><\/td><\/td><\/td><\/tr>
                      Hipertens\u00e3o Arterial Sist\u00eamica<\/td>\u2014<\/td>\u2014<\/td><\/td><\/td><\/td><\/td><\/tr>
                      Hipertens\u00e3o Arterial Sist\u00eamica e Diabetes Mellitus<\/td>0.03<\/td>-36, 36<\/td>0.999<\/td><\/td><\/td><\/td><\/tr>
                      Hipertens\u00e3o Arterial Sist\u00eamica e Insufici\u00eancia Renal<\/td>6.4<\/td>-69, 82<\/td>0.857<\/td><\/td><\/td><\/td><\/tr>
                      N\u00e3o<\/td>-11<\/td>-70, 47<\/td>0.689<\/td><\/td><\/td><\/td><\/tr>
                      Diagn\u00f3stico.Funcional<\/strong><\/td><\/td><\/td><\/td><\/td><\/td><\/td><\/tr>
                      Hemiparesia \u00e0 direita<\/td>\u2014<\/td>\u2014<\/td><\/td><\/td><\/td><\/td><\/tr>
                      Hemiparesia \u00e0 esquerda<\/td>2.7<\/td>-28, 34<\/td>0.855<\/td><\/td><\/td><\/td><\/tr>
                      Disfagia<\/strong><\/td>-10<\/td>-51, 31<\/td>0.603<\/td><\/td><\/td><\/td><\/tr>
                      Peso<\/strong><\/td>-3.7<\/td>-13, 5.3<\/td>0.386<\/td><\/td><\/td><\/td><\/tr>
                      Idade<\/strong><\/td>-1.9<\/td>-4.7, 1.0<\/td>0.177<\/td>-0.90<\/td>-1.6, -0.18<\/td>0.015<\/td><\/tr>
                      Altura<\/strong><\/td>0.89<\/td>-3.1, 4.8<\/td>0.636<\/td><\/td><\/td><\/td><\/tr>
                      IMC<\/strong><\/td>16<\/td>-13, 45<\/td>0.255<\/td><\/td><\/td><\/td><\/tr>
                      Tempo.de.diagn\u00f3stico<\/strong><\/td>-0.04<\/td>-0.35, 0.28<\/td>0.803<\/td><\/td><\/td><\/td><\/tr>
                      PIM\u00e1x<\/strong><\/td>0.49<\/td>-0.32, 1.3<\/td>0.212<\/td>0.54<\/td>0.23, 0.86<\/td>0.001<\/td><\/tr>
                      MIF<\/strong><\/td>0.21<\/td>-1.3, 1.7<\/td>0.770<\/td><\/td><\/td><\/td><\/tr>
                      DASI<\/strong><\/td>0.89<\/td>-19, 21<\/td>0.926<\/td><\/td><\/td><\/td><\/tr><\/tbody>
                      1<\/em> <\/sup>CI = Confidence Interval<\/td><\/tr><\/tfoot><\/table><\/figure>\n\n\n\n

                      inline_text()<\/em><\/h3>\n\n\n\n

                      Resultados de uma regress\u00e3o de forma reproduz\u00edvel<\/h4>\n\n\n\n
                      `r inline_text(tabela, variable = ,pattern = \"{}\")`<\/code><\/pre>\n\n\n\n

                      Argumentos:<\/p>\n\n\n\n

                      • nome da tabela<\/li>
                      • variable: a vari\u00e1vel que deseja ter os resultados<\/li>
                      • pattern: as estat\u00edsticas que ser\u00e3o imprimidas entre chaves e aspas ({estimate},{conf.low},{conf.high},{p.value},{conf.level},{N})<\/li><\/ul>\n\n\n\n
                        \"\"<\/figure>\n\n\n\n

                        Houve influ\u00eancia significativa (valor- p=0.001) e positiva (\u03b2 = 0.54) do PIM\u00e1x sobre a PEM\u00e1x. Sendo assim, a cada uma unidade acrescida no PIM\u00e1x, espera-se um aumento m\u00e9dio de 0.54 unidades na PEM\u00e1x.<\/p>\n\n\n\n

                        \"\"<\/figure>\n\n\n\n

                        Houve influ\u00eancia significativa (valor- p=0.015)) e negativa (\u03b2 = -0.90) da Idade sobre a PEM\u00e1x. Sendo assim, a cada uma unidade acrescida na Idade, espera-se um diminui\u00e7\u00e3o m\u00e9dia de -0.90 unidades na PEM\u00e1x.<\/p>\n\n\n\n

                        Resultados de uma an\u00e1lise descritiva de forma reproduz\u00edvel<\/h4>\n\n\n\n
                        `r inline_text(tabela, variable = , column = ,level = ,pattern = \"{}\")`<\/code><\/pre>\n\n\n\n

                        Argumentos:<\/p>\n\n\n\n

                        • nome da tabela;<\/li>
                        • variable: a vari\u00e1vel que deseja ter os resultados;<\/li>
                        • column: n\u00edvel da vari\u00e1vel escolhida (coluna);<\/li>
                        • level: n\u00edvel da vari\u00e1vel categ\u00f3rica (linha);<\/li>
                        • pattern: as estat\u00edsticas que devem ser imprimidas entre aspas e chaves( ).<\/li><\/ul>\n\n\n\n
                          \"\"<\/figure>\n\n\n\n

                          Os indiv\u00edduos apresentaram, em m\u00e9dia, 69.05 anos, com desvio padr\u00e3o de 7.32. A idade m\u00ednima observada foi 60.00 e a idade m\u00e1xima foi 87.00<\/p>\n\n\n\n

                          \"\"<\/figure>\n\n\n\n

                          A maioria dos indiv\u00edduos (59%) \u00e9 do sexo masculino.<\/p>\n\n\n\n

                          <\/p>\n","protected":false},"excerpt":{"rendered":"

                          O pacote gtsummary\u00a0utiliza todos os recursos do pacote gt para criar tabelas anal\u00edticas e de resumo prontas para a publica\u00e7\u00e3o.<\/p>\n","protected":false},"author":8,"featured_media":7070,"comment_status":"open","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"site-sidebar-layout":"","site-content-layout":"","ast-main-header-display":"","ast-hfb-above-header-display":"","ast-hfb-below-header-display":"","ast-hfb-mobile-header-display":"","site-post-title":"","ast-breadcrumbs-content":"","ast-featured-img":"","footer-sml-layout":"","theme-transparent-header-meta":"","adv-header-id-meta":"","stick-header-meta":"","header-above-stick-meta":"","header-main-stick-meta":"","header-below-stick-meta":"","spay_email":"","footnotes":""},"categories":[445],"tags":[104,294,247,295,296],"class_list":["post-7058","post","type-post","status-publish","format-standard","has-post-thumbnail","hentry","category-ferramentas-e-tecnologias","tag-dados","tag-gtsummary","tag-pacote","tag-resumo","tag-tabelas"],"yoast_head":"\nGtsummary: tabelas de resumo prontas para publica\u00e7\u00e3o - Statplace<\/title>\n<meta name=\"description\" content=\"O pacote gtsummary\u00a0utiliza todos os recursos do pacote gt para criar tabelas anal\u00edticas e de resumo prontas para a publica\u00e7\u00e3o.\" \/>\n<meta name=\"robots\" content=\"index, follow, max-snippet:-1, max-image-preview:large, max-video-preview:-1\" \/>\n<link rel=\"canonical\" href=\"https:\/\/statplace.com.br\/blog\/gtsummary-tabelas-de-resumo-prontas-para-publicacao\/\" \/>\n<meta property=\"og:locale\" content=\"pt_BR\" \/>\n<meta property=\"og:type\" content=\"article\" \/>\n<meta property=\"og:title\" content=\"Gtsummary: tabelas de resumo prontas para publica\u00e7\u00e3o - Statplace\" \/>\n<meta property=\"og:description\" content=\"O pacote gtsummary\u00a0utiliza todos os recursos do pacote gt para criar tabelas anal\u00edticas e de resumo prontas para a publica\u00e7\u00e3o.\" \/>\n<meta property=\"og:url\" content=\"https:\/\/statplace.com.br\/blog\/gtsummary-tabelas-de-resumo-prontas-para-publicacao\/\" \/>\n<meta property=\"og:site_name\" content=\"Statplace\" \/>\n<meta property=\"article:published_time\" content=\"2020-10-15T16:00:03+00:00\" \/>\n<meta property=\"article:modified_time\" content=\"2024-10-01T20:31:16+00:00\" \/>\n<meta property=\"og:image\" content=\"https:\/\/statplace.com.br\/wp-content\/uploads\/2020\/10\/gtsummary-27-scaled-1.jpg\" \/>\n\t<meta property=\"og:image:width\" content=\"2560\" \/>\n\t<meta property=\"og:image:height\" content=\"920\" \/>\n\t<meta property=\"og:image:type\" content=\"image\/jpeg\" \/>\n<meta name=\"twitter:card\" content=\"summary_large_image\" \/>\n<meta name=\"twitter:label1\" content=\"Escrito por\" \/>\n\t<meta name=\"twitter:data1\" content=\"Adilane Ribeiro da Silva\" \/>\n\t<meta name=\"twitter:label2\" content=\"Est. tempo de leitura\" \/>\n\t<meta name=\"twitter:data2\" content=\"13 minutos\" \/>\n<script type=\"application\/ld+json\" class=\"yoast-schema-graph\">{\"@context\":\"https:\/\/schema.org\",\"@graph\":[{\"@type\":\"WebSite\",\"@id\":\"https:\/\/statplace.com.br\/#website\",\"url\":\"https:\/\/statplace.com.br\/\",\"name\":\"Statplace\",\"description\":\"A Estat\u00edstica ao alcance de todos.\",\"potentialAction\":[{\"@type\":\"SearchAction\",\"target\":{\"@type\":\"EntryPoint\",\"urlTemplate\":\"https:\/\/statplace.com.br\/?s={search_term_string}\"},\"query-input\":\"required name=search_term_string\"}],\"inLanguage\":\"pt-BR\"},{\"@type\":\"ImageObject\",\"@id\":\"https:\/\/statplace.com.br\/blog\/gtsummary-tabelas-de-resumo-prontas-para-publicacao\/#primaryimage\",\"inLanguage\":\"pt-BR\",\"url\":\"https:\/\/site.statplace.com.br\/wp-content\/uploads\/2020\/10\/gtsummary-27-scaled-1.jpg\",\"contentUrl\":\"https:\/\/site.statplace.com.br\/wp-content\/uploads\/2020\/10\/gtsummary-27-scaled-1.jpg\",\"width\":2560,\"height\":920},{\"@type\":\"WebPage\",\"@id\":\"https:\/\/statplace.com.br\/blog\/gtsummary-tabelas-de-resumo-prontas-para-publicacao\/#webpage\",\"url\":\"https:\/\/statplace.com.br\/blog\/gtsummary-tabelas-de-resumo-prontas-para-publicacao\/\",\"name\":\"Gtsummary: tabelas de resumo prontas para publica\u00e7\u00e3o - Statplace\",\"isPartOf\":{\"@id\":\"https:\/\/statplace.com.br\/#website\"},\"primaryImageOfPage\":{\"@id\":\"https:\/\/statplace.com.br\/blog\/gtsummary-tabelas-de-resumo-prontas-para-publicacao\/#primaryimage\"},\"datePublished\":\"2020-10-15T16:00:03+00:00\",\"dateModified\":\"2024-10-01T20:31:16+00:00\",\"author\":{\"@id\":\"https:\/\/statplace.com.br\/#\/schema\/person\/4e381a96f090496264e98c9be9afddc9\"},\"description\":\"O pacote gtsummary\u00a0utiliza todos os recursos do pacote gt para criar tabelas anal\u00edticas e de resumo prontas para a publica\u00e7\u00e3o.\",\"breadcrumb\":{\"@id\":\"https:\/\/statplace.com.br\/blog\/gtsummary-tabelas-de-resumo-prontas-para-publicacao\/#breadcrumb\"},\"inLanguage\":\"pt-BR\",\"potentialAction\":[{\"@type\":\"ReadAction\",\"target\":[\"https:\/\/statplace.com.br\/blog\/gtsummary-tabelas-de-resumo-prontas-para-publicacao\/\"]}]},{\"@type\":\"BreadcrumbList\",\"@id\":\"https:\/\/statplace.com.br\/blog\/gtsummary-tabelas-de-resumo-prontas-para-publicacao\/#breadcrumb\",\"itemListElement\":[{\"@type\":\"ListItem\",\"position\":1,\"name\":\"In\u00edcio\",\"item\":\"https:\/\/statplace.com.br\/\"},{\"@type\":\"ListItem\",\"position\":2,\"name\":\"Gtsummary: tabelas de resumo prontas para publica\u00e7\u00e3o\"}]},{\"@type\":\"Person\",\"@id\":\"https:\/\/statplace.com.br\/#\/schema\/person\/4e381a96f090496264e98c9be9afddc9\",\"name\":\"Adilane Ribeiro da Silva\",\"image\":{\"@type\":\"ImageObject\",\"@id\":\"https:\/\/statplace.com.br\/#personlogo\",\"inLanguage\":\"pt-BR\",\"url\":\"https:\/\/secure.gravatar.com\/avatar\/cba8d3cd5f938f2bda6868e657a95cb7?s=96&d=mm&r=g\",\"contentUrl\":\"https:\/\/secure.gravatar.com\/avatar\/cba8d3cd5f938f2bda6868e657a95cb7?s=96&d=mm&r=g\",\"caption\":\"Adilane Ribeiro da Silva\"},\"url\":\"https:\/\/site.statplace.com.br\/blog\/author\/adilane\/\"}]}<\/script>\n<!-- \/ Yoast SEO plugin. -->","yoast_head_json":{"title":"Gtsummary: tabelas de resumo prontas para publica\u00e7\u00e3o - Statplace","description":"O pacote gtsummary\u00a0utiliza todos os recursos do pacote gt para criar tabelas anal\u00edticas e de resumo prontas para a publica\u00e7\u00e3o.","robots":{"index":"index","follow":"follow","max-snippet":"max-snippet:-1","max-image-preview":"max-image-preview:large","max-video-preview":"max-video-preview:-1"},"canonical":"https:\/\/statplace.com.br\/blog\/gtsummary-tabelas-de-resumo-prontas-para-publicacao\/","og_locale":"pt_BR","og_type":"article","og_title":"Gtsummary: tabelas de resumo prontas para publica\u00e7\u00e3o - Statplace","og_description":"O pacote gtsummary\u00a0utiliza todos os recursos do pacote gt para criar tabelas anal\u00edticas e de resumo prontas para a publica\u00e7\u00e3o.","og_url":"https:\/\/statplace.com.br\/blog\/gtsummary-tabelas-de-resumo-prontas-para-publicacao\/","og_site_name":"Statplace","article_published_time":"2020-10-15T16:00:03+00:00","article_modified_time":"2024-10-01T20:31:16+00:00","og_image":[{"width":2560,"height":920,"url":"https:\/\/statplace.com.br\/wp-content\/uploads\/2020\/10\/gtsummary-27-scaled-1.jpg","type":"image\/jpeg"}],"twitter_card":"summary_large_image","twitter_misc":{"Escrito por":"Adilane Ribeiro da Silva","Est. tempo de leitura":"13 minutos"},"schema":{"@context":"https:\/\/schema.org","@graph":[{"@type":"WebSite","@id":"https:\/\/statplace.com.br\/#website","url":"https:\/\/statplace.com.br\/","name":"Statplace","description":"A Estat\u00edstica ao alcance de todos.","potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"https:\/\/statplace.com.br\/?s={search_term_string}"},"query-input":"required name=search_term_string"}],"inLanguage":"pt-BR"},{"@type":"ImageObject","@id":"https:\/\/statplace.com.br\/blog\/gtsummary-tabelas-de-resumo-prontas-para-publicacao\/#primaryimage","inLanguage":"pt-BR","url":"https:\/\/site.statplace.com.br\/wp-content\/uploads\/2020\/10\/gtsummary-27-scaled-1.jpg","contentUrl":"https:\/\/site.statplace.com.br\/wp-content\/uploads\/2020\/10\/gtsummary-27-scaled-1.jpg","width":2560,"height":920},{"@type":"WebPage","@id":"https:\/\/statplace.com.br\/blog\/gtsummary-tabelas-de-resumo-prontas-para-publicacao\/#webpage","url":"https:\/\/statplace.com.br\/blog\/gtsummary-tabelas-de-resumo-prontas-para-publicacao\/","name":"Gtsummary: tabelas de resumo prontas para publica\u00e7\u00e3o - Statplace","isPartOf":{"@id":"https:\/\/statplace.com.br\/#website"},"primaryImageOfPage":{"@id":"https:\/\/statplace.com.br\/blog\/gtsummary-tabelas-de-resumo-prontas-para-publicacao\/#primaryimage"},"datePublished":"2020-10-15T16:00:03+00:00","dateModified":"2024-10-01T20:31:16+00:00","author":{"@id":"https:\/\/statplace.com.br\/#\/schema\/person\/4e381a96f090496264e98c9be9afddc9"},"description":"O pacote gtsummary\u00a0utiliza todos os recursos do pacote gt para criar tabelas anal\u00edticas e de resumo prontas para a publica\u00e7\u00e3o.","breadcrumb":{"@id":"https:\/\/statplace.com.br\/blog\/gtsummary-tabelas-de-resumo-prontas-para-publicacao\/#breadcrumb"},"inLanguage":"pt-BR","potentialAction":[{"@type":"ReadAction","target":["https:\/\/statplace.com.br\/blog\/gtsummary-tabelas-de-resumo-prontas-para-publicacao\/"]}]},{"@type":"BreadcrumbList","@id":"https:\/\/statplace.com.br\/blog\/gtsummary-tabelas-de-resumo-prontas-para-publicacao\/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"In\u00edcio","item":"https:\/\/statplace.com.br\/"},{"@type":"ListItem","position":2,"name":"Gtsummary: tabelas de resumo prontas para publica\u00e7\u00e3o"}]},{"@type":"Person","@id":"https:\/\/statplace.com.br\/#\/schema\/person\/4e381a96f090496264e98c9be9afddc9","name":"Adilane Ribeiro da Silva","image":{"@type":"ImageObject","@id":"https:\/\/statplace.com.br\/#personlogo","inLanguage":"pt-BR","url":"https:\/\/secure.gravatar.com\/avatar\/cba8d3cd5f938f2bda6868e657a95cb7?s=96&d=mm&r=g","contentUrl":"https:\/\/secure.gravatar.com\/avatar\/cba8d3cd5f938f2bda6868e657a95cb7?s=96&d=mm&r=g","caption":"Adilane Ribeiro da Silva"},"url":"https:\/\/site.statplace.com.br\/blog\/author\/adilane\/"}]}},"jetpack_featured_media_url":"https:\/\/site.statplace.com.br\/wp-content\/uploads\/2020\/10\/gtsummary-27-scaled-1.jpg","_links":{"self":[{"href":"https:\/\/site.statplace.com.br\/wp-json\/wp\/v2\/posts\/7058","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/site.statplace.com.br\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/site.statplace.com.br\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/site.statplace.com.br\/wp-json\/wp\/v2\/users\/8"}],"replies":[{"embeddable":true,"href":"https:\/\/site.statplace.com.br\/wp-json\/wp\/v2\/comments?post=7058"}],"version-history":[{"count":1,"href":"https:\/\/site.statplace.com.br\/wp-json\/wp\/v2\/posts\/7058\/revisions"}],"predecessor-version":[{"id":27860,"href":"https:\/\/site.statplace.com.br\/wp-json\/wp\/v2\/posts\/7058\/revisions\/27860"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/site.statplace.com.br\/wp-json\/wp\/v2\/media\/7070"}],"wp:attachment":[{"href":"https:\/\/site.statplace.com.br\/wp-json\/wp\/v2\/media?parent=7058"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/site.statplace.com.br\/wp-json\/wp\/v2\/categories?post=7058"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/site.statplace.com.br\/wp-json\/wp\/v2\/tags?post=7058"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}