Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the astra-sites domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /home/statplace/public_html/site/wp-includes/functions.php on line 6114

Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the jetpack domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /home/statplace/public_html/site/wp-includes/functions.php on line 6114

Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the wpforms-lite domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /home/statplace/public_html/site/wp-includes/functions.php on line 6114

Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the wordpress-seo domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /home/statplace/public_html/site/wp-includes/functions.php on line 6114

Notice: A função _load_textdomain_just_in_time foi chamada incorretamente. O carregamento da tradução para o domínio astra foi ativado muito cedo. Isso geralmente é um indicador de que algum código no plugin ou tema está sendo executado muito cedo. As traduções devem ser carregadas na ação init ou mais tarde. Leia como Depurar o WordPress para mais informações. (Esta mensagem foi adicionada na versão 6.7.0.) in /home/statplace/public_html/site/wp-includes/functions.php on line 6114

Warning: Cannot modify header information - headers already sent by (output started at /home/statplace/public_html/site/wp-includes/functions.php:6114) in /home/statplace/public_html/site/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /home/statplace/public_html/site/wp-includes/functions.php:6114) in /home/statplace/public_html/site/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /home/statplace/public_html/site/wp-includes/functions.php:6114) in /home/statplace/public_html/site/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /home/statplace/public_html/site/wp-includes/functions.php:6114) in /home/statplace/public_html/site/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /home/statplace/public_html/site/wp-includes/functions.php:6114) in /home/statplace/public_html/site/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /home/statplace/public_html/site/wp-includes/functions.php:6114) in /home/statplace/public_html/site/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /home/statplace/public_html/site/wp-includes/functions.php:6114) in /home/statplace/public_html/site/wp-includes/rest-api/class-wp-rest-server.php on line 1893

Warning: Cannot modify header information - headers already sent by (output started at /home/statplace/public_html/site/wp-includes/functions.php:6114) in /home/statplace/public_html/site/wp-includes/rest-api/class-wp-rest-server.php on line 1893
{"id":6943,"date":"2020-09-17T13:00:33","date_gmt":"2020-09-17T16:00:33","guid":{"rendered":"https:\/\/site.statplace.com.br\/?p=6943"},"modified":"2024-10-07T15:48:57","modified_gmt":"2024-10-07T15:48:57","slug":"tidyverse-os-pacotes-mais-usados-no-r","status":"publish","type":"post","link":"https:\/\/site.statplace.com.br\/blog\/tidyverse-os-pacotes-mais-usados-no-r\/","title":{"rendered":"Tidyverse: os pacotes mais usados no R"},"content":{"rendered":"\n

Artigo escrito com a colabora\u00e7\u00e3o de Joziani Mota Vieira<\/p>\n\n\n\n

O tidyverse \u00e9 uma cole\u00e7\u00e3o opinativa de pacotes no R.<\/a> Eles s\u00e3o utilizados para manipula\u00e7\u00e3o, explora\u00e7\u00e3o e visualiza\u00e7\u00e3o de dados al\u00e9m de compartilharem uma filosofia de design comum. Foram desenvolvidos principalmente pelo Hadley Wickham, mas agora est\u00e3o sendo expandidos por v\u00e1rios colaboradores.<\/p>\n\n\n\n

\"workflow<\/a><\/figure>\n\n\n\n

Pacotes<\/h2>\n\n\n\n

O tidyverse est\u00e1 sempre se atualizado e novos pacotes podem ser adicionados ou modificados. Nesse artigo vamos falar sobre alguns dos mais famosos e que usamos com mais frequ\u00eancia. <\/p>\n\n\n\n

\"pacotes<\/a><\/figure>\n\n\n\n

Instalando o tidyverse teremos o seguinte: <\/p>\n\n\n\n

if(!require(tidyverse)){install.packages(\"tidyverse\");require(tidyverse)}\n\n## Loading required package: tidyverse\n\n## -- Attaching packages ------------------------------------------------------------------------- tidyverse 1.2.1 --\n\n## v ggplot2 3.3.1     v purrr   0.3.2\n## v tibble  2.1.3     v dplyr   0.8.3\n## v tidyr   1.0.0     v stringr 1.4.0\n## v readr   1.3.1     v forcats 0.4.0\n\n## -- Conflicts ---------------------------------------------------------------------------- tidyverse_conflicts() --\n## x dplyr::filter() masks stats::filter()\n## x dplyr::lag()    masks stats::lag()\n<\/code><\/pre>\n\n\n\n
tidyverse_packages()\n\n##  [1] \"broom\"       \"cli\"         \"crayon\"      \"dplyr\"       \"dbplyr\"     \n##  [6] \"forcats\"     \"ggplot2\"     \"haven\"       \"hms\"         \"httr\"       \n## [11] \"jsonlite\"    \"lubridate\"   \"magrittr\"    \"modelr\"      \"purrr\"      \n## [16] \"readr\"       \"readxl\\n(>=\" \"reprex\"      \"rlang\"       \"rstudioapi\" \n## [21] \"rvest\"       \"stringr\"     \"tibble\"      \"tidyr\"       \"xml2\"       \n## [26] \"tidyverse\"\n<\/pre>\n\n\n\n

<\/a>Readr<\/h2>\n\n\n\n
\"pacote<\/a><\/figure>\n\n\n\n

O readr foi desenvolvido para ser um jeito r\u00e1pido e f\u00e1cil de importar dados retangulares (dados estruturados, csv, tsv e fwf) das mais diferentes fontes.<\/p>\n\n\n\n

Para exemplificar vamos rodar os dados de desmatamento na Amaz\u00f4nia por estado nos anos de 2012 a 2015.<\/p>\n\n\n\n

dados <- read_csv2(\"dados\/desmatamento_amazonia_estados_prodes_2012-2015.csv\", n_max = 10)<\/pre>\n\n\n\n
## Using ',' as decimal and '.' as grouping mark. Use read_delim() for more control.\n\n## Parsed with column specification:\n## cols(\n##   Ano = col_character(),\n##   Bioma = col_character(),\n##   Categoria = col_character(),\n##   Estado = col_character(),\n##   `N\u00famero de registros` = col_double(),\n##   Per\u00edodo = col_character(),\n##   `\u00c1rea Desmatada (Ha)` = col_double()\n## )\n<\/code><\/pre>\n\n\n\n
dados<\/pre>\n\n\n\n
## # A tibble: 10 x 7\n##    Ano    Bioma  Categoria Estado `N\u00famero de regi~ Per\u00edodo `\u00c1rea Desmatada~\n##    <chr>  <chr>  <chr>     <chr>             <dbl> <chr>              <dbl>\n##  1 At\u00e9 2~ Amaz\u00f4~ Desflore~ Acre                  1 31\/12\/~         2069693.\n##  2 At\u00e9 2~ Amaz\u00f4~ Desflore~ Amap\u00e1                 1 31\/12\/~          296397.\n##  3 At\u00e9 2~ Amaz\u00f4~ Desflore~ Amazo~                1 31\/12\/~         3504916.\n##  4 At\u00e9 2~ Amaz\u00f4~ Desflore~ Maran~                1 31\/12\/~         8005248.\n##  5 At\u00e9 2~ Amaz\u00f4~ Desflore~ Mato ~                1 31\/12\/~        18127035.\n##  6 At\u00e9 2~ Amaz\u00f4~ Desflore~ Par\u00e1                  1 31\/12\/~        25387874.\n##  7 At\u00e9 2~ Amaz\u00f4~ Desflore~ Rond\u00f4~                1 31\/12\/~         8602887.\n##  8 At\u00e9 2~ Amaz\u00f4~ Desflore~ Rorai~                1 31\/12\/~          976429.\n##  9 At\u00e9 2~ Amaz\u00f4~ Desflore~ Tocan~                1 31\/12\/~         2518520.\n## 10 2013   Amaz\u00f4~ Desflore~ Acre                  1 31\/12\/~           19961.\n<\/code><\/pre>\n\n\n\n
write_csv2(x = dados, path = \"dados\/desmatamento_amazonia_estados_prodes_2012-2015_v2.csv\")<\/pre>\n\n\n\n

<\/a>Leitura<\/h3>\n\n\n\n

O readr l\u00ea sete formatos de arquivo com essas sete fun\u00e7\u00f5es abaixo: <\/p>\n\n\n\n

read_csv() – Arquivos separados por v\u00edrgula
read_tsv() – Arquivos separados por tabula\u00e7\u00e3o
read_delim() – Arquivos delimitados gerais
read_fwf() – Arquivos de largura fixa
read_table() – Arquivos tabulares em que as colunas s\u00e3o separadas por espa\u00e7o em branco.
read_log() – Arquivos de log da web<\/p>\n\n\n\n

<\/a>Exporta\u00e7\u00e3o<\/h3>\n\n\n\n

E exporta nos seguintes formatos:<\/p>\n\n\n\n

write_csv()
write_csv2()
write_delim()
write_excel_csv() – Salva de csv para Excel
write_excel_csv2()
write_tsv()<\/p>\n\n\n\n

<\/a>Outros arquivos<\/h3>\n\n\n\n

haven<\/strong> L\u00ea arquivos SPSS, Stata , and SAS files.
readxl<\/strong> L\u00ea arquivos excel xls e.xlsx).
DBI<\/strong> , em conjunto junto com um back-end espec\u00edfico do banco de dados (por exemplo, RMySQL , RSQLite , RPostgreSQL etc.) permite executar consultas SQL em um banco
de dados e retornar uma tabela de dados.
Googledrive<\/strong> importa arquivos do Google Drive
jsonlite<\/strong> L\u00ea arquivos json
xml2<\/strong> L\u00ea arquivos XML
httr<\/strong> L\u00ea arquivos Web APIs
rvest<\/strong> L\u00ea arquivos HTML<\/p>\n\n\n\n

<\/a>Tibble<\/h2>\n\n\n\n
\"pacote<\/a><\/figure>\n\n\n\n

Tibbles s\u00e3o data frames que for\u00e7am voc\u00ea a lidar com os problemas no in\u00edcio do projeto e desenvolver um c\u00f3digo mais limpo e expressivo. Ele n\u00e3o altera o nome ou tipo das vari\u00e1veis e aponta erros quando a vari\u00e1vel n\u00e3o existe. Aqui rodamos um exemplo usando a base de dados Iris. <\/p>\n\n\n\n

head(data.frame(iris))<\/pre>\n\n\n\n
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species\n## 1          5.1         3.5          1.4         0.2  setosa\n## 2          4.9         3.0          1.4         0.2  setosa\n## 3          4.7         3.2          1.3         0.2  setosa\n## 4          4.6         3.1          1.5         0.2  setosa\n## 5          5.0         3.6          1.4         0.2  setosa\n## 6          5.4         3.9          1.7         0.4  setosa\n<\/code><\/pre>\n\n\n\n
as_tibble(iris)<\/pre>\n\n\n\n
## # A tibble: 150 x 5\n##    Sepal.Length Sepal.Width Petal.Length Petal.Width Species\n##           <dbl>       <dbl>        <dbl>       <dbl> <fct>  \n##  1          5.1         3.5          1.4         0.2 setosa \n##  2          4.9         3            1.4         0.2 setosa \n##  3          4.7         3.2          1.3         0.2 setosa \n##  4          4.6         3.1          1.5         0.2 setosa \n##  5          5           3.6          1.4         0.2 setosa \n##  6          5.4         3.9          1.7         0.4 setosa \n##  7          4.6         3.4          1.4         0.3 setosa \n##  8          5           3.4          1.5         0.2 setosa \n##  9          4.4         2.9          1.4         0.2 setosa \n## 10          4.9         3.1          1.5         0.1 setosa \n## # ... with 140 more rows\n<\/code><\/pre>\n\n\n\n

<\/a>Forcats<\/h2>\n\n\n\n
\"pacote<\/a><\/figure>\n\n\n\n

As principais fun\u00e7\u00f5es do forcats servem para alterar a ordem e modificar os n\u00edveis de um fator.<\/p>\n\n\n\n

fator <- factor(c(\"a\",\"a\",\"a\",\"b\",\"b\", \"c\", \"d\", \"e\"))\n\nfct_collapse(fator, b2 = c(\"b\", \"c\"), a2 = c(\"a\", \"d\"))<\/pre>\n\n\n\n
## [1] a2 a2 a2 b2 b2 b2 a2 e \n## Levels: a2 b2 e\n<\/code><\/pre>\n\n\n\n
fct_recode(fator, b2 = \"b\", b2 = \"c\", a2 = \"a\", a2 = \"d\")<\/pre>\n\n\n\n
## [1] a2 a2 a2 b2 b2 b2 a2 e \n## Levels: a2 b2 e\n<\/code><\/pre>\n\n\n\n
# Transforma os n\u00edveis menos frequentes de um fator em um n\u00edvel \u201cOutros\u201d.\n\nfct_lump(fator, 2, other_level = \"Outros\")<\/pre>\n\n\n\n
## [1] a      a      a      b      b      Outros Outros Outros\n## Levels: a b Outros\n<\/code><\/pre>\n\n\n\n

<\/a>Broom<\/h2>\n\n\n\n
\"pacote<\/a><\/figure>\n\n\n\n

Broom sumariza informa\u00e7\u00f5es-chave sobre os modelos em tibbles usando tr\u00eas fun\u00e7\u00f5es: tidy, glance e augment.<\/p>\n\n\n\n

if(!require(broom)){install.packages(\"broom\");require(broom)}\n\nfit <- lm(Sepal.Width ~ Petal.Length + Petal.Width, iris)\n\ntidy(fit)<\/pre>\n\n\n\n
## # A tibble: 3 x 5\n##   term         estimate std.error statistic  p.value\n##   <chr>           <dbl>     <dbl>     <dbl>    <dbl>\n## 1 (Intercept)     3.59     0.0937     38.3  2.51e-78\n## 2 Petal.Length   -0.257    0.0669     -3.84 1.80e- 4\n## 3 Petal.Width     0.364    0.155       2.35 2.01e- 2\n<\/code><\/pre>\n\n\n\n

tidy<\/strong> produz um tibble onde cada linha cont\u00e9m informa\u00e7\u00f5es sobre um componente importante do modelo. Para modelos de regress\u00e3o, isso geralmente corresponde a coeficientes de regress\u00e3o. Isso pode ser \u00fatil se voc\u00ea deseja inspecionar um modelo ou criar visualiza\u00e7\u00f5es personalizadas.<\/p>\n\n\n\n

glance(fit)<\/pre>\n\n\n\n
## # A tibble: 1 x 11\n##   r.squared adj.r.squared sigma statistic p.value    df logLik   AIC   BIC\n##       <dbl>         <dbl> <dbl>     <dbl>   <dbl> <int>  <dbl> <dbl> <dbl>\n## 1     0.213         0.202 0.389      19.9 2.24e-8     3  -69.8  148.  160.\n## # ... with 2 more variables: deviance <dbl>, df.residual <int>\n<\/code><\/pre>\n\n\n\n

glance<\/strong> devolve um tibble com exatamente uma linha de qualidade de medidas de condicionamento f\u00edsico e estat\u00edsticas relacionadas. Isso \u00e9 \u00fatil para verificar a especifica\u00e7\u00e3o incorreta do modelo e comparar muitos modelos.<\/p>\n\n\n\n

augment(fit, data = iris)<\/pre>\n\n\n\n
## # A tibble: 150 x 12\n##    Sepal.Length Sepal.Width Petal.Length Petal.Width Species .fitted\n##           <dbl>       <dbl>        <dbl>       <dbl> <fct>     <dbl>\n##  1          5.1         3.5          1.4         0.2 setosa     3.30\n##  2          4.9         3            1.4         0.2 setosa     3.30\n##  3          4.7         3.2          1.3         0.2 setosa     3.33\n##  4          4.6         3.1          1.5         0.2 setosa     3.27\n##  5          5           3.6          1.4         0.2 setosa     3.30\n##  6          5.4         3.9          1.7         0.4 setosa     3.30\n##  7          4.6         3.4          1.4         0.3 setosa     3.34\n##  8          5           3.4          1.5         0.2 setosa     3.27\n##  9          4.4         2.9          1.4         0.2 setosa     3.30\n## 10          4.9         3.1          1.5         0.1 setosa     3.24\n## # ... with 140 more rows, and 6 more variables: .se.fit <dbl>,\n## #   .resid <dbl>, .hat <dbl>, .sigma <dbl>, .cooksd <dbl>,\n## #   .std.resid <dbl>\n<\/code><\/pre>\n\n\n\n

augment<\/strong> adiciona colunas a um conjunto de dados, contendo informa\u00e7\u00f5es como valores ajustados, res\u00edduos ou atribui\u00e7\u00f5es de cluster. Todas as colunas adicionadas a um conjunto de dados t\u00eam “.prefixo” para impedir que as colunas existentes sejam substitu\u00eddas.<\/p>\n\n\n\n

<\/a>Purrr<\/h2>\n\n\n\n
\"pacote<\/a><\/figure>\n\n\n\n

Purr contribui para a programa\u00e7\u00e3o funcional com um consistente conjunto de ferramentas que facilitam o trabalho com vetores e fun\u00e7\u00f5es<\/a>. <\/p>\n\n\n\n

name <- c(\"Jon Snow\", \"Asha Greyjoy\", \"Daenerys Targaryen\", \"Eddard Stark\", \"Brienne of Tarth\",\"Melisandre\",\n         \"Kevan Lannister\", \"Davos Seaworth\", \"Victarion Greyjoy\",\"Sansa Stark\")\n\n# Usando imap_chr o nome (.x) e o \u00edndice do nome (.y)\n\nimap_chr(name, ~ paste0(.y, \": \", .x))<\/pre>\n\n\n\n
##  [1] \"1: Jon Snow\"           \"2: Asha Greyjoy\"      \n##  [3] \"3: Daenerys Targaryen\" \"4: Eddard Stark\"      \n##  [5] \"5: Brienne of Tarth\"   \"6: Melisandre\"        \n##  [7] \"7: Kevan Lannister\"    \"8: Davos Seaworth\"    \n##  [9] \"9: Victarion Greyjoy\"  \"10: Sansa Stark\"\n<\/code><\/pre>\n\n\n\n
imap_chr(name, ~ paste0(\"Got : \", .x))<\/pre>\n\n\n\n
##  [1] \"Got : Jon Snow\"           \"Got : Asha Greyjoy\"      \n##  [3] \"Got : Daenerys Targaryen\" \"Got : Eddard Stark\"      \n##  [5] \"Got : Brienne of Tarth\"   \"Got : Melisandre\"        \n##  [7] \"Got : Kevan Lannister\"    \"Got : Davos Seaworth\"    \n##  [9] \"Got : Victarion Greyjoy\"  \"Got : Sansa Stark\"\n<\/code><\/pre>\n\n\n\n

<\/a>Outras Fun\u00e7\u00f5es<\/h3>\n\n\n\n

map(.x, .f, \u2026)<\/p>\n\n\n\n

map_if(.x, .p, .f, \u2026)<\/p>\n\n\n\n

map_at(.x, .at, .f, \u2026)<\/p>\n\n\n\n

map_lgl(.x, .f, \u2026)<\/p>\n\n\n\n

map_chr(.x, .f, \u2026)<\/p>\n\n\n\n

map_int(.x, .f, \u2026)<\/p>\n\n\n\n

map_dbl(.x, .f, \u2026)<\/p>\n\n\n\n

map_dfr(.x, .f, \u2026, .id = NULL)<\/p>\n\n\n\n

map_dfc(.x, .f, \u2026)<\/p>\n\n\n\n

walk(.x, .f, \u2026)<\/p>\n\n\n\n

Existem ainda muitos outros pacotes dentro do tidyverse, como o ggplot2 para visualiza\u00e7\u00e3o e cria\u00e7\u00e3o de gr\u00e1ficos, o dplyr para a manipula\u00e7\u00e3o de dados e o tidyr para organizar a base de dados de forma coesa. Mas cada um deles \u00e9 muito vasto e preferimos quebrar esse assunto em diferentes artigos. <\/p>\n\n\n\n

Siga a Oper nas redes sociais! Assim voc\u00ea recebe notifica\u00e7\u00f5es sobre as novas postagens. Estamos no Instagram<\/a>, LinkedIn<\/a> e Facebook<\/a>. <\/p>\n","protected":false},"excerpt":{"rendered":"

O tidyverse \u00e9 uma cole\u00e7\u00e3o opinativa de pacotes no R. Eles s\u00e3o utilizados para manipula\u00e7\u00e3o, explora\u00e7\u00e3o e visualiza\u00e7\u00e3o de dados al\u00e9m de compartilharem uma filosofia de design comum.<\/p>\n","protected":false},"author":8,"featured_media":6950,"comment_status":"open","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"site-sidebar-layout":"","site-content-layout":"","ast-main-header-display":"","ast-hfb-above-header-display":"","ast-hfb-below-header-display":"","ast-hfb-mobile-header-display":"","site-post-title":"","ast-breadcrumbs-content":"","ast-featured-img":"","footer-sml-layout":"","theme-transparent-header-meta":"","adv-header-id-meta":"","stick-header-meta":"","header-above-stick-meta":"","header-main-stick-meta":"","header-below-stick-meta":"","spay_email":"","footnotes":""},"categories":[445],"tags":[275,276,247,277,278,181,279],"class_list":["post-6943","post","type-post","status-publish","format-standard","has-post-thumbnail","hentry","category-ferramentas-e-tecnologias","tag-broom","tag-forcats","tag-pacote","tag-purrr","tag-readr","tag-tibbles","tag-tidyverse"],"yoast_head":"\nTidyverse: os pacotes mais usados no R - Statplace<\/title>\n<meta name=\"description\" content=\"O Tidyverse \u00e9 uma cole\u00e7\u00e3o opinativa de pacotes no R. Eles s\u00e3o utilizados para manipula\u00e7\u00e3o, explora\u00e7\u00e3o e visualiza\u00e7\u00e3o de dados.\" \/>\n<meta name=\"robots\" content=\"index, follow, max-snippet:-1, max-image-preview:large, max-video-preview:-1\" \/>\n<link rel=\"canonical\" href=\"https:\/\/statplace.com.br\/blog\/tidyverse-os-pacotes-mais-usados-no-r\/\" \/>\n<meta property=\"og:locale\" content=\"pt_BR\" \/>\n<meta property=\"og:type\" content=\"article\" \/>\n<meta property=\"og:title\" content=\"Tidyverse: os pacotes mais usados no R - Statplace\" \/>\n<meta property=\"og:description\" content=\"O Tidyverse \u00e9 uma cole\u00e7\u00e3o opinativa de pacotes no R. Eles s\u00e3o utilizados para manipula\u00e7\u00e3o, explora\u00e7\u00e3o e visualiza\u00e7\u00e3o de dados.\" \/>\n<meta property=\"og:url\" content=\"https:\/\/statplace.com.br\/blog\/tidyverse-os-pacotes-mais-usados-no-r\/\" \/>\n<meta property=\"og:site_name\" content=\"Statplace\" \/>\n<meta property=\"article:published_time\" content=\"2020-09-17T16:00:33+00:00\" \/>\n<meta property=\"article:modified_time\" content=\"2024-10-07T15:48:57+00:00\" \/>\n<meta property=\"og:image\" content=\"https:\/\/statplace.com.br\/wp-content\/uploads\/2020\/09\/artigos2-23-scaled-1.jpg\" \/>\n\t<meta property=\"og:image:width\" content=\"2560\" \/>\n\t<meta property=\"og:image:height\" content=\"920\" \/>\n\t<meta property=\"og:image:type\" content=\"image\/jpeg\" \/>\n<meta name=\"twitter:card\" content=\"summary_large_image\" \/>\n<meta name=\"twitter:label1\" content=\"Escrito por\" \/>\n\t<meta name=\"twitter:data1\" content=\"Adilane Ribeiro da Silva\" \/>\n\t<meta name=\"twitter:label2\" content=\"Est. tempo de leitura\" \/>\n\t<meta name=\"twitter:data2\" content=\"5 minutos\" \/>\n<script type=\"application\/ld+json\" class=\"yoast-schema-graph\">{\"@context\":\"https:\/\/schema.org\",\"@graph\":[{\"@type\":\"WebSite\",\"@id\":\"https:\/\/statplace.com.br\/#website\",\"url\":\"https:\/\/statplace.com.br\/\",\"name\":\"Statplace\",\"description\":\"A Estat\u00edstica ao alcance de todos.\",\"potentialAction\":[{\"@type\":\"SearchAction\",\"target\":{\"@type\":\"EntryPoint\",\"urlTemplate\":\"https:\/\/statplace.com.br\/?s={search_term_string}\"},\"query-input\":\"required name=search_term_string\"}],\"inLanguage\":\"pt-BR\"},{\"@type\":\"ImageObject\",\"@id\":\"https:\/\/statplace.com.br\/blog\/tidyverse-os-pacotes-mais-usados-no-r\/#primaryimage\",\"inLanguage\":\"pt-BR\",\"url\":\"https:\/\/site.statplace.com.br\/wp-content\/uploads\/2020\/09\/artigos2-23-scaled-1.jpg\",\"contentUrl\":\"https:\/\/site.statplace.com.br\/wp-content\/uploads\/2020\/09\/artigos2-23-scaled-1.jpg\",\"width\":2560,\"height\":920},{\"@type\":\"WebPage\",\"@id\":\"https:\/\/statplace.com.br\/blog\/tidyverse-os-pacotes-mais-usados-no-r\/#webpage\",\"url\":\"https:\/\/statplace.com.br\/blog\/tidyverse-os-pacotes-mais-usados-no-r\/\",\"name\":\"Tidyverse: os pacotes mais usados no R - Statplace\",\"isPartOf\":{\"@id\":\"https:\/\/statplace.com.br\/#website\"},\"primaryImageOfPage\":{\"@id\":\"https:\/\/statplace.com.br\/blog\/tidyverse-os-pacotes-mais-usados-no-r\/#primaryimage\"},\"datePublished\":\"2020-09-17T16:00:33+00:00\",\"dateModified\":\"2024-10-07T15:48:57+00:00\",\"author\":{\"@id\":\"https:\/\/statplace.com.br\/#\/schema\/person\/4e381a96f090496264e98c9be9afddc9\"},\"description\":\"O Tidyverse \u00e9 uma cole\u00e7\u00e3o opinativa de pacotes no R. Eles s\u00e3o utilizados para manipula\u00e7\u00e3o, explora\u00e7\u00e3o e visualiza\u00e7\u00e3o de dados.\",\"breadcrumb\":{\"@id\":\"https:\/\/statplace.com.br\/blog\/tidyverse-os-pacotes-mais-usados-no-r\/#breadcrumb\"},\"inLanguage\":\"pt-BR\",\"potentialAction\":[{\"@type\":\"ReadAction\",\"target\":[\"https:\/\/statplace.com.br\/blog\/tidyverse-os-pacotes-mais-usados-no-r\/\"]}]},{\"@type\":\"BreadcrumbList\",\"@id\":\"https:\/\/statplace.com.br\/blog\/tidyverse-os-pacotes-mais-usados-no-r\/#breadcrumb\",\"itemListElement\":[{\"@type\":\"ListItem\",\"position\":1,\"name\":\"In\u00edcio\",\"item\":\"https:\/\/statplace.com.br\/\"},{\"@type\":\"ListItem\",\"position\":2,\"name\":\"Tidyverse: os pacotes mais usados no R\"}]},{\"@type\":\"Person\",\"@id\":\"https:\/\/statplace.com.br\/#\/schema\/person\/4e381a96f090496264e98c9be9afddc9\",\"name\":\"Adilane Ribeiro da Silva\",\"image\":{\"@type\":\"ImageObject\",\"@id\":\"https:\/\/statplace.com.br\/#personlogo\",\"inLanguage\":\"pt-BR\",\"url\":\"https:\/\/secure.gravatar.com\/avatar\/cba8d3cd5f938f2bda6868e657a95cb7?s=96&d=mm&r=g\",\"contentUrl\":\"https:\/\/secure.gravatar.com\/avatar\/cba8d3cd5f938f2bda6868e657a95cb7?s=96&d=mm&r=g\",\"caption\":\"Adilane Ribeiro da Silva\"},\"url\":\"https:\/\/site.statplace.com.br\/blog\/author\/adilane\/\"}]}<\/script>\n<!-- \/ Yoast SEO plugin. -->","yoast_head_json":{"title":"Tidyverse: os pacotes mais usados no R - Statplace","description":"O Tidyverse \u00e9 uma cole\u00e7\u00e3o opinativa de pacotes no R. Eles s\u00e3o utilizados para manipula\u00e7\u00e3o, explora\u00e7\u00e3o e visualiza\u00e7\u00e3o de dados.","robots":{"index":"index","follow":"follow","max-snippet":"max-snippet:-1","max-image-preview":"max-image-preview:large","max-video-preview":"max-video-preview:-1"},"canonical":"https:\/\/statplace.com.br\/blog\/tidyverse-os-pacotes-mais-usados-no-r\/","og_locale":"pt_BR","og_type":"article","og_title":"Tidyverse: os pacotes mais usados no R - Statplace","og_description":"O Tidyverse \u00e9 uma cole\u00e7\u00e3o opinativa de pacotes no R. Eles s\u00e3o utilizados para manipula\u00e7\u00e3o, explora\u00e7\u00e3o e visualiza\u00e7\u00e3o de dados.","og_url":"https:\/\/statplace.com.br\/blog\/tidyverse-os-pacotes-mais-usados-no-r\/","og_site_name":"Statplace","article_published_time":"2020-09-17T16:00:33+00:00","article_modified_time":"2024-10-07T15:48:57+00:00","og_image":[{"width":2560,"height":920,"url":"https:\/\/statplace.com.br\/wp-content\/uploads\/2020\/09\/artigos2-23-scaled-1.jpg","type":"image\/jpeg"}],"twitter_card":"summary_large_image","twitter_misc":{"Escrito por":"Adilane Ribeiro da Silva","Est. tempo de leitura":"5 minutos"},"schema":{"@context":"https:\/\/schema.org","@graph":[{"@type":"WebSite","@id":"https:\/\/statplace.com.br\/#website","url":"https:\/\/statplace.com.br\/","name":"Statplace","description":"A Estat\u00edstica ao alcance de todos.","potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"https:\/\/statplace.com.br\/?s={search_term_string}"},"query-input":"required name=search_term_string"}],"inLanguage":"pt-BR"},{"@type":"ImageObject","@id":"https:\/\/statplace.com.br\/blog\/tidyverse-os-pacotes-mais-usados-no-r\/#primaryimage","inLanguage":"pt-BR","url":"https:\/\/site.statplace.com.br\/wp-content\/uploads\/2020\/09\/artigos2-23-scaled-1.jpg","contentUrl":"https:\/\/site.statplace.com.br\/wp-content\/uploads\/2020\/09\/artigos2-23-scaled-1.jpg","width":2560,"height":920},{"@type":"WebPage","@id":"https:\/\/statplace.com.br\/blog\/tidyverse-os-pacotes-mais-usados-no-r\/#webpage","url":"https:\/\/statplace.com.br\/blog\/tidyverse-os-pacotes-mais-usados-no-r\/","name":"Tidyverse: os pacotes mais usados no R - Statplace","isPartOf":{"@id":"https:\/\/statplace.com.br\/#website"},"primaryImageOfPage":{"@id":"https:\/\/statplace.com.br\/blog\/tidyverse-os-pacotes-mais-usados-no-r\/#primaryimage"},"datePublished":"2020-09-17T16:00:33+00:00","dateModified":"2024-10-07T15:48:57+00:00","author":{"@id":"https:\/\/statplace.com.br\/#\/schema\/person\/4e381a96f090496264e98c9be9afddc9"},"description":"O Tidyverse \u00e9 uma cole\u00e7\u00e3o opinativa de pacotes no R. Eles s\u00e3o utilizados para manipula\u00e7\u00e3o, explora\u00e7\u00e3o e visualiza\u00e7\u00e3o de dados.","breadcrumb":{"@id":"https:\/\/statplace.com.br\/blog\/tidyverse-os-pacotes-mais-usados-no-r\/#breadcrumb"},"inLanguage":"pt-BR","potentialAction":[{"@type":"ReadAction","target":["https:\/\/statplace.com.br\/blog\/tidyverse-os-pacotes-mais-usados-no-r\/"]}]},{"@type":"BreadcrumbList","@id":"https:\/\/statplace.com.br\/blog\/tidyverse-os-pacotes-mais-usados-no-r\/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"In\u00edcio","item":"https:\/\/statplace.com.br\/"},{"@type":"ListItem","position":2,"name":"Tidyverse: os pacotes mais usados no R"}]},{"@type":"Person","@id":"https:\/\/statplace.com.br\/#\/schema\/person\/4e381a96f090496264e98c9be9afddc9","name":"Adilane Ribeiro da Silva","image":{"@type":"ImageObject","@id":"https:\/\/statplace.com.br\/#personlogo","inLanguage":"pt-BR","url":"https:\/\/secure.gravatar.com\/avatar\/cba8d3cd5f938f2bda6868e657a95cb7?s=96&d=mm&r=g","contentUrl":"https:\/\/secure.gravatar.com\/avatar\/cba8d3cd5f938f2bda6868e657a95cb7?s=96&d=mm&r=g","caption":"Adilane Ribeiro da Silva"},"url":"https:\/\/site.statplace.com.br\/blog\/author\/adilane\/"}]}},"jetpack_featured_media_url":"https:\/\/site.statplace.com.br\/wp-content\/uploads\/2020\/09\/artigos2-23-scaled-1.jpg","_links":{"self":[{"href":"https:\/\/site.statplace.com.br\/wp-json\/wp\/v2\/posts\/6943","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/site.statplace.com.br\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/site.statplace.com.br\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/site.statplace.com.br\/wp-json\/wp\/v2\/users\/8"}],"replies":[{"embeddable":true,"href":"https:\/\/site.statplace.com.br\/wp-json\/wp\/v2\/comments?post=6943"}],"version-history":[{"count":3,"href":"https:\/\/site.statplace.com.br\/wp-json\/wp\/v2\/posts\/6943\/revisions"}],"predecessor-version":[{"id":27790,"href":"https:\/\/site.statplace.com.br\/wp-json\/wp\/v2\/posts\/6943\/revisions\/27790"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/site.statplace.com.br\/wp-json\/wp\/v2\/media\/6950"}],"wp:attachment":[{"href":"https:\/\/site.statplace.com.br\/wp-json\/wp\/v2\/media?parent=6943"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/site.statplace.com.br\/wp-json\/wp\/v2\/categories?post=6943"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/site.statplace.com.br\/wp-json\/wp\/v2\/tags?post=6943"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}